设数列[an}的前n项和为Sn,a1=a ,a2=p(p>0),Sn=n(an-a1)/2(1)求a的值(2)求证 数列{an}是等差数列(3) 求证 (an -1)/(an+1)<1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 13:42:50
设数列[an}的前n项和为Sn,a1=a ,a2=p(p>0),Sn=n(an-a1)/2(1)求a的值(2)求证 数列{an}是等差数列(3) 求证 (an -1)/(an+1)<1
xՐ=N@Vlywz| TG+R#DaKAB ((O߆dPP $t [6ݳ=?[? bTC̍p  QB֡qTLa"u=o*8dS :G ,|'#gd=bse'g"'ĩγQ+($HOH |f_W=hi-罈]Ur!澫P;йر$\@#ΛT]

设数列[an}的前n项和为Sn,a1=a ,a2=p(p>0),Sn=n(an-a1)/2(1)求a的值(2)求证 数列{an}是等差数列(3) 求证 (an -1)/(an+1)<1
设数列[an}的前n项和为Sn,a1=a ,a2=p(p>0),Sn=n(an-a1)/2
(1)求a的值
(2)求证 数列{an}是等差数列
(3) 求证 (an -1)/(an+1)<1

设数列[an}的前n项和为Sn,a1=a ,a2=p(p>0),Sn=n(an-a1)/2(1)求a的值(2)求证 数列{an}是等差数列(3) 求证 (an -1)/(an+1)<1
(1)S1=1(a1-a1)/2=0=a1=a
所以a=0
(2)因为a1=0,所以Sn=n(an+a1)/2
所以an为等差数列
(3)d=a2-a1=p>0
所以an-1

设数列{an}的前n项和为Sn,a1=10,a(n+1)=9Sn+10 数列{an},中,a1=1/3,设Sn为数列{an}的前n项和,Sn=n(2n-1)an 求Sn 设数列an的前n项和为Sn,已知a1=1,(2Sn)/n=a(n+1)-1/3n^2-n-2/3 设数列an的首项a1等于1,前n项和为sn,sn+1=2n设数列an的首项a1等于1,前n项和为sn,sn+1=2n 设数列an的前n项和为sn,已知a1=a,a不等于3,a(n+1)=sn+3^n 设数列{an}的前n项和为Sn,已知a1=a,an+1=Sn+3^n,n∈N+.设bn=Sn+3n,求数列{bn}的通项公式 设数列{an}的前n项和为Sn,已知a1=a,An+1 =Sn+3^n (n∈N+),设bn=Sn-3^n,求数列{bn}的通项公式. 设数列{An}的前n项和为Sn,已知A1=a,A(n+1)=Sn+3∧n,n是正整数,设Bn=Sn-3∧n,求数列{Bn}的通项 设数列An的前n项和为Sn,已知a1=1,An+1=Sn+3n+1求证数列{An+3}是等比数列 设数列{an}的前n项和为sn,已知a1=a,an+1=Sn+3^n,n属于N*.)设数列{an}的前n项和为sn,已知a1=a,an+1=Sn+3^n,n属于N*.(1)设bn=Sn-3^n,求数列{bn}通项公式;(2)若an+1>=an,n属于N*,求a的取值范围....Thanks.... 设数列An的前n项和为Sn,已知a1=a,an+1=Sn+3n设Bn=Sn-3n次方,求数列Bn的通项公式 已知数列{an}的前n项和Sn,且a1=a(a为非零常数),当n>=2时,an=2Sn^2/2已知数列{an}的前n项和Sn,且a1=a(a为非零常数),当n>=2时,an=2Sn^2/2Sn-11)求证:数列{1/Sn}是等差数列2)设bn=Sn/an,数列bn的前n项和为Tn.已 设数列【An】的前n项和为Sn,A1=10,An+1=9Sn+10.设Bn=lgAn,求证数列【Bn】为等差数列 【高考】若数列{an}满足,a1=1,且a(n+1)=an/(1+an),设数列{bn}的前n项和为Sn,且Sn=2-bn,求{bn/an}的前...【高考】若数列{an}满足,a1=1,且a(n+1)=an/(1+an),设数列{bn}的前n项和为Sn,且Sn=2-bn,求{bn/an}的前n项和Tn 设数列{An}的前n项的和为Sn已知A1=a A(n+1)=Sn+3^n (1)设Bn=Sn-3^n 求数列{Bn}的通项公式? 设数列{an}的前n项和为Sn,若a1=1,Sn=2an+Sn+(n∈N+),则a6= 设数列{an}的前n项和为Sn,且a1=1,Sn=nan-2n(n-1) (1)求a2,a3,a4,并求出数列{an}的通项公式.(2)设数列{1/a 一道数学题:设数列{an}的前n项和为Sn.已知a1=a,a(n+1)=Sn+3^n,n属于N*.设数列{an}的前n项和为Sn.已知a1=a,a(n+1)=Sn+3^n,n属于N*.(1)设bn=Sn-3^n,求数列{bn}的通项公式; (2)若a(n+1)≥an,n属于N*,求a的取值