正方形ABCD中,P是BD上一点,PE垂直于BC于E,M是PD的中点,连AE交BD于N1,(BN+DM)\MN值不变.2,(BN^2+DM^2)\MN^2值不变以上只有一个结论正确,请证明 用初二年的知识~相似没学过!

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 03:17:06
正方形ABCD中,P是BD上一点,PE垂直于BC于E,M是PD的中点,连AE交BD于N1,(BN+DM)\MN值不变.2,(BN^2+DM^2)\MN^2值不变以上只有一个结论正确,请证明 用初二年的知识~相似没学过!
xTnQ6cDLf`Oy40i J˥6B04ŚJ1drm .CK-YT5xmuEQDͬl8Cݗw#elz(lP0pg>pcv h;`Ήfb:s )?&̬u궁.jN#B;sL>ݚyؤa..Ϲ.m  q&eMKG@IWQ謉.*ntLM^͈=̬QuƃuztI9N&6e,^1+rɳ80X~[Ŵ;ȶ6FRMQZPX+a] @!y虔pCII+ 5ᓕ͝$>?%)D˦ˍ2r"*j -KSC̈́?{6{Zʋk2*HkH=&rE5jr灱豱YIt;+4/i^8:o`+e!;γ&$$y1HmFYԡ[n<40hS.[۪+gO{RR/P'@@!+(7o8d~`OFrjG;/T\ըq[-B }D"3-4#6"ߤw)YەY6囖G/WqG*ZoQHע!?RTvMT,zjkR).+twvMƄ6ZNx:݄}Z $ ǝG;1`MT&?

正方形ABCD中,P是BD上一点,PE垂直于BC于E,M是PD的中点,连AE交BD于N1,(BN+DM)\MN值不变.2,(BN^2+DM^2)\MN^2值不变以上只有一个结论正确,请证明 用初二年的知识~相似没学过!
正方形ABCD中,P是BD上一点,PE垂直于BC于E,M是PD的中点,连AE交BD于N
1,(BN+DM)\MN值不变.2,(BN^2+DM^2)\MN^2值不变
以上只有一个结论正确,请证明
用初二年的知识~相似没学过!

正方形ABCD中,P是BD上一点,PE垂直于BC于E,M是PD的中点,连AE交BD于N1,(BN+DM)\MN值不变.2,(BN^2+DM^2)\MN^2值不变以上只有一个结论正确,请证明 用初二年的知识~相似没学过!
这道题用解析几何做也可以,解析几何你们学过吧?就是把整个图形放在坐标系里面去做.
图尼已经应该画出来了,我直接说解题步骤了.
以AB为Y轴,BC为X轴建系.
因为是正方形,不难看出BD所在直线方程为y=x
所以设P(b,b),D(a,a)
则M((a+b)/2,(a+b)/2) (这个是中点公式)
又A(0,a) E(b,0)
所以AE所在直线方程为 y=(-a/b)x+a
联立直线BD,AE求出交点N(ab/(a+b),ab/(a+b))
则BN=根号2ab/(a+b)
DM=根号2(a-b)/2
MN=根号2(a^2+b^2)/2(a+b)^2
自己往里代代看就知道了,结果是结论2正确,(BN^2+DM^2)\MN^2=1
这道题我用了很复杂的方法,用几何证明应该也是可以做出来的,你再问问别人吧

图图图图图图图图图图图给我

其实∠EPC是直角,PD也是平分∠EPC的.理由如下:
先证△ADE≌△CDG(这个好证)
得∠DAE=∠DCG
可得ADCP四点共圆
∵∠ADC=90°
∴∠APC=90°
即∠EPC=90°
连接AC,知∠ACD=45°
∴∠DPA=∠DCA=45°
∴其对顶角也为45°
易得:PD平分∠EPC

在正方形ABCD中,P是对角线BD上一点,PE⊥BC,PF⊥CD,垂足分别为E、F,求证AP⊥EF. 在正方形ABCD中,E是BC上一点,BE=2,EC=1,P是BD上一动点,求PE+PC的最小值 在正方形ABCD中,P是线段BD上的一点PE⊥BC于E,M是PD的中点,连EM、AM.求证:AM=EM. 如图在正方形ABCD中,E是BC边上的一定点,在BD上确定一点P使PE+PC的值最小 如图,在正方形ABCD中,P是对角线AC上一点,PB⊥PE,求证:PB=PE 如图P是正方形ABCD对角线BD上一点,连接PC,E为AB边上一点,且PE垂直PC,请问PC与PE相等吗? 如图:P是正方形ABCD对角线BD上一点,PE⊥DC,PF⊥BC,E,F分别是垂足,求证EF=AP如提问 已知:P是正方形ABCD对角线BD上一点,PE垂直DC,PF垂直BC,E、F分别为垂足.求证:AP=EF P是正方形ABCD对角线BD上一点.PE⊥DC.PF⊥BC.E.F 分别为垂足,求证 AP=EF.有图! P是正方形ABCD对角线BD上一点.PE⊥DC.PF⊥BC.E.F 分别为垂足,求证 AP=EF. P是正方形ABCD对角线BD上一点,连结AP,PE⊥DC,PF⊥BC,点E,F分别为垂足.求证:AP=EF. 已知:P是正方形ABCD对角线BD上一点,PE垂直DC,PF垂直BC,E、F分别为垂足.求证:AP=EF 已知:P是正方形ABCD对角线BD上一点,PE⊥DC,PF⊥BC,E、F分别为垂足. 求证:AP=EF. 如图,点P是正方形ABCD对角线BD上的一点,PE垂直BC,PF垂直CD,垂足分别为E、F.求证:AP=EF 如图,已知正方形ABCD中,P是BD上任意一点,PE⊥BC,垂足为E点,PF⊥CD垂足为F,求证AP⊥EF 如图,已知正方形ABCD中,P是BD上任意一点,PE⊥BC,垂足为E点,PF⊥CD垂足为F,求证AP⊥EF 正方形ABCD中,E为AB上一点,AE=7,BE=5,在对角线BD上找一点P,使PE+PA最短 如图,P是正方形ABCD对角线BD上一点