已知三点A( 1,0,0)B(3,1,1)C(2,0,1)求向量CB向量CA的夹角再求向量CB在向量CA方向上的投影

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 22:31:34
已知三点A( 1,0,0)B(3,1,1)C(2,0,1)求向量CB向量CA的夹角再求向量CB在向量CA方向上的投影
x){}K|޴C{:cCC 666=0e{v|>钝/Oz֋,=gLųi;';JuM}wMR>u-H l:*m5hԿ3h= ׀(`Ŷ0EZ0V,rAlΧۍذg Ov/';v<ݵ ŭHB`.j)F<;P,Yh

已知三点A( 1,0,0)B(3,1,1)C(2,0,1)求向量CB向量CA的夹角再求向量CB在向量CA方向上的投影
已知三点A( 1,0,0)B(3,1,1)C(2,0,1)求向量CB向量CA的夹角
再求向量CB在向量CA方向上的投影

已知三点A( 1,0,0)B(3,1,1)C(2,0,1)求向量CB向量CA的夹角再求向量CB在向量CA方向上的投影
向量CB=(1,1,0),向量CA=(-1,0,-1)
cos=向量CA*向量CB/模CA*模CB=1*(-1)+1*0+0*(-1)/根号2*根号2=-1/2
所以向量CB向量CA的夹角为120度
向量CB在向量CA上的投影=模CB*cos120度=-根号2/2