在Rt△ABC中,∠C=90°,BC:AC=1:√3,CD⊥AB于D,求S△CDB:S△ABC

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 21:33:05
在Rt△ABC中,∠C=90°,BC:AC=1:√3,CD⊥AB于D,求S△CDB:S△ABC
xSn@(RYDV8=hHcXP J64TeBq/0Cl*u9޹;~U= 3')UkP7ڈyG7LN6 u3Xv~pF[OWwgzl moe{$wul&رlVUHj-9vu<*{ d,aeAmU4X"" k QB%q& G׶dY*r\Ŗ9^Zq^ /CAV+X%@ %^h@Jq['rrLJV|U9JO>^z&kHE GĦ95FI):Y$p7z1?Ghf&{n3a氩8xkAUN>ʨ

在Rt△ABC中,∠C=90°,BC:AC=1:√3,CD⊥AB于D,求S△CDB:S△ABC
在Rt△ABC中,∠C=90°,BC:AC=1:√3,CD⊥AB于D,求S△CDB:S△ABC

在Rt△ABC中,∠C=90°,BC:AC=1:√3,CD⊥AB于D,求S△CDB:S△ABC
很直观的可以设单位1,即设BC为1
那么,AC为√3,AB为2
那么CD为√3/2,那么BD为1/2
S△CDB:S△ABC 即为
S△CDB=1/2 CD*BD=1/2 * √3/2 * 1/2
 
S△ABC=1/2 AC*BC=1/2 * √3 *1
所以比为1:4

由题知,S△CDB∽S△ABC ,且相似比为1:2,故面积比为1:4

tanA=BC/AC=tan30
所以角A=30度
所以角BCD=30度
BD=1/2
有勾股定理得CD=√3/2
S△CDB:S△ABC =BD*CD:BC*AC=1:4

1:8