如图,已知直线y=-x+2与x轴、y轴分别交于点A和点B,另已知直线y=kx+b(k≠0)经过点C(1,0),且把△AOB分成两部分.(1)若△AOB被分成的两部分面积相等,求k和b的值;(2)若△AOB被分成的两部分

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 13:41:04
如图,已知直线y=-x+2与x轴、y轴分别交于点A和点B,另已知直线y=kx+b(k≠0)经过点C(1,0),且把△AOB分成两部分.(1)若△AOB被分成的两部分面积相等,求k和b的值;(2)若△AOB被分成的两部分
xVKOQ+.Q.3. c MilInpGuPRQh,_p =wiIMuu_}xQf^4fK+R<ت]܄>.a*UOu-kq3\O1 >BGST@3z0ѩFJX"a[D/ιw·K jSndf"=C`fKYpxPS"to^[8^Ґ5# Ӟ*,SS䌛!Y}: M~o 46Njw 1!'ŅX_r*0+ؽ"&cTƢ}8 ,aO]Qd:`dm&W a7즘@NӿKRaB^jEaihk+i0n u'8N5}ccD125oBᗼwd s+*F$nY ȃ{[P9oK&g9."mՏp!RЭ^&M<~V,(Mcy^v#{Bj[UgMQp[j{I%Y3j9njMDD^9a۴z*P ۖ0簄~8RQ1 n`e"XZ٠ڥ|z,^lgTk0R\Lqrzch@ˢm>woj]^?a[UN8߶% SB

如图,已知直线y=-x+2与x轴、y轴分别交于点A和点B,另已知直线y=kx+b(k≠0)经过点C(1,0),且把△AOB分成两部分.(1)若△AOB被分成的两部分面积相等,求k和b的值;(2)若△AOB被分成的两部分
如图,已知直线y=-x+2与x轴、y轴分别交于点A和点B,另已知直线y=kx+b(k≠0)经过点C(1,0),且把△AOB分成两部分.
(1)若△AOB被分成的两部分面积相等,求k和b的值;
(2)若△AOB被分成的两部分面积比为1:2,求k和b的值.

如图,已知直线y=-x+2与x轴、y轴分别交于点A和点B,另已知直线y=kx+b(k≠0)经过点C(1,0),且把△AOB分成两部分.(1)若△AOB被分成的两部分面积相等,求k和b的值;(2)若△AOB被分成的两部分
1)∵y=-x+2∴A(2,0)B﹙0,2﹚又C(1,0)∴C是原点与A点的中点,所以,当直线Y=KX+b与直线y=-x+2交于点B时,面积相等,(同底等高,面积相等)
所以推出k=-2,b=2
2)同理,因为同底等高,所以当高之比为1:2是,面积之比为1:2,
所以经过(0,1),推出k=-1,b=1

(1)直线过A,C 时就可:
(2)直线过P2/3,4/3)与C点就可,使△PCB的面积为2/3

(1)k=b=2
(2)k=-1,b=1或x=1

显然,A(2,0),B(0,2)。S△AOB=2。
由题意知,k+b=0,k=-b。
(1)若△AOB被分成的两部分面积相等,由于点C(1,0)是OA的中点,所以,此直线必过点B(0,2),所以,b=2,k=-2。

哥们25的吧

显然,A(2,0),B(0,2)。S△AOB=2。
由题意知,k+b=0,k=-b。
(1)若△AOB被分成的两部分面积相等,由于点C(1,0)是OA的中点,所以,此直线必过点B(0,2),所以,b=2,k=-2。
(2)若△AOB被分成的两部分面积比为1:5,有两种情况。
一是当左边的部分是1份时,那么设直线y=kx+b与Y轴的交点是D(0,b),则△CO...

全部展开

显然,A(2,0),B(0,2)。S△AOB=2。
由题意知,k+b=0,k=-b。
(1)若△AOB被分成的两部分面积相等,由于点C(1,0)是OA的中点,所以,此直线必过点B(0,2),所以,b=2,k=-2。
(2)若△AOB被分成的两部分面积比为1:5,有两种情况。
一是当左边的部分是1份时,那么设直线y=kx+b与Y轴的交点是D(0,b),则△COD的面积是△AOB面积的1/6,于是:1/2*1*b=2*1/6,b=2/3。k=-2/3。
二是当右边的部分是1份时,那么设直线y=-bx+b与直线y=-x+2的交点为E。则不难求得E[(b-2)/(b-1),b/(b-1)]。S△COD=21/6=1/3=1/2*1*b/(b-1),b=-2,k=2。

收起

(1)k=b=2
(2)k=-1,b=1
还有一种方法
,A(2,0),B(0,2)。S△AOB=2。
由题意知,k+b=0,k=-b。
(1)若△AOB被分成的两部分面积相等,由于点C(1,0)是OA的中点,所以,此直线必过点B(0,2),所以,b=2,k=-2。

如图,直线y=kx分抛物线y=x-x^2与X轴所围图形为面积相等的两部分,求K值. 如图,一直线AC与已知直线AB:y=2x+1关于y轴对称①求直线AC的解析式;( 5分)②说明两直线与x轴围成的三角形是等腰三角形.( 已知:如图,直线y=-1/2x+1与x轴、y轴的交点分别是A和B,把线段AB绕点A顺时针旋转90°得线段AB' 如图,直线Y=负二分之一X+1与X轴,Y轴分别. 如图,已知直线L1:y=1/2x+1与x轴交于点A,过点A的另一直线L2与双曲线y=-8/x(x>0)如图,已知直线L1:y=1/2x+1与x轴交于点A,过点A的另一直线L2与双曲线y=-8/x(x>0)相交于点B(2,m)(1)求直线L2的解析 已知:如图,直线y=-x+4与x轴、y轴分别交于A、B两点.(1)若双曲线y=k/x(k≠0)与直线y=-x+4在第一象限已知:如图,直线y=-x+4与x轴、y轴分别交于A、B两点。(1)若双曲线y=k/x(k≠0)与直线y=-x+4在 已知:如图,直线y=-x+4与x轴、y轴分别交于A、B两点.(1)若双曲线y=k/x(k≠0)与直线y=-x+4在第一象限有已知:如图,直线y=-x+4与x轴、y轴分别交于A、B两点。(1)若双曲线y=k/x(k≠0)与直线y=-x+4 已知,如图,直线y=3/2x+9/2与x轴、y轴分别交于a、b两点 如图,已知直线AC的解析式为y=1/2x+2,其分别交x轴、y轴与A、C两点,与反比例函数y=k/x如图,已知直线AC的解析式为y=1/2x+2,其分别交x轴、y轴与A、C两点,与反比例函数y=k/x(x>0)交于点P,且PB⊥x轴与B 已知直线y=kx分抛物线y=x-x^2与x轴所围图形为面积相等的两部分,求k值 如图,直线y=-1/3x+b与直线y=2x-6的交点A在x轴上,直线y=2x-6与y轴交于点c.求b的值 如图,已知抛物线y=(x-1)²与直线y=2x+1相交于A、B两点,与x轴交于点c,顶点为D(1)求抛物线与直线交点坐标 如图已知直线l1:y=4x-2与直线l2:y=-x+13交于点A,直线l1,l2分别交x轴于B,两点,求三角形ABC的面积. 如图,已知直线y=-x+2与x轴、y轴分别交于点A和点B,另已知直线y=kx+b(k≠0)经过点C(1,0),且……如图,已知直线y=-x+2与x轴、y轴分别交于点A和点B,另已知直线y=kx+b(k≠0)经过点C(1,0),且把△AO 如图,已知直线y=-x+2与x轴、y轴分别交于点A和点B,另已知直线y= kx+b(k≠0)经过点C如图,已知直线y=-x+2与x轴、y轴分别交于点A和点B,另已知直线y= kx+b(k≠0)经过点C(1,0),且把△AOB分成两部分.(1)若△A 如图,已知直线y=-x+2与x轴、y轴分别交于点A和点B,另已知直线y=kx+b(k≠0)经过点C(1,0),……如图,已知直线y=-x+2与x轴、y轴分别交于点A和点B,另已知直线y=kx+b(k≠0)经过点C(1,0),且把△AOB 如图,已知直线y=-x+2与x轴、y轴分别交于点A和点B,另已知直线y=kx+b(k≠0)经过点C(1,0),……如图,已知直线y=-x+2与x轴、y轴分别交于点A和点B,另已知直线y=kx+b(k≠0)经过点C(1,0),且把△AOB 已知,如图,直线y=(2分之3)x+2分之9与x,y轴分别相交A,B两点,与双曲线y=x分之k,第一象限于点C