设α,β均为锐角,且sinβ/sinα=cos(α+β),求tanβ的最大值注意是tanβ的最大值,不是所有可能的值!

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 05:38:36
设α,β均为锐角,且sinβ/sinα=cos(α+β),求tanβ的最大值注意是tanβ的最大值,不是所有可能的值!
xUN@~cz1E**mzꅢ0JMK m A Y'9:38&*P+Z|7NaawzJ3luR~4;p7PF֌;jTuTP9AtQV# 4K`<'z?LK[7'?O-} eBIV.1.X( <2Yp?t6ОV2$(vS0RqjEֹ f3UU8,|Y#([wPkp)"k7(r8yzzzRZRW B ׿ݵth$&H[(;Y"_j(Q̪Oatn`&"|ҿwuU=ՠ@6l<5] .\~_,h

设α,β均为锐角,且sinβ/sinα=cos(α+β),求tanβ的最大值注意是tanβ的最大值,不是所有可能的值!
设α,β均为锐角,且sinβ/sinα=cos(α+β),求tanβ的最大值
注意是tanβ的最大值,不是所有可能的值!

设α,β均为锐角,且sinβ/sinα=cos(α+β),求tanβ的最大值注意是tanβ的最大值,不是所有可能的值!
sinβ/sinα=cosα*cosβ-sin*αsinβ ……①
①*(sin/αcosβ)得到 tanβ=sinαcosα-sin^2αtanβ
移项再除(1+sin^2α)得到tanβ=sinacosa/(1+sin^2α)
因为1=sin^2α+cos^2α所以sinαcos/α(1+sin^2α)=
sinαcos/α(2sin^2α+cos^2α)……②
②的分子分母同时除cos^2α得到:tan/α(2tan^2α+1)……③
1/③=1/[(2tan^2+1)/tanα]即1/[2tanα+2/2tanα]……④
因为α为锐角所以tanα》0,求tanβ的最大值就是求④的最大值
则要求2tanα+2/2tanα最小值,根据基本不等式得到2tanα+2/2tanα≥2倍根号2
所以1/[2tanα+2/2tanα]最大值为1/2倍根号2
即tanβ的最大值:(根号2)/4

sinβ/sina=cosa*cosβ-sina*sinβ
sinβ=cosβ-sina2sinβ
1=1/tanβ-sina2
tanβ=1/(1+sina2)
tanβ=1/2

sinβ/sina=cosa*cosβ-sina*sinβ
sinβ=sina*cosa*cosβ-sina*sina*sinβ 同除cosβ
tanβ=1/2*sin2a+tanβ*(cos2a-1)/2 移项,合并
tanβ=sin2a/(3-cos2a) 利用万能公式
tanβ=tana/(1+2tana*tana) ...

全部展开

sinβ/sina=cosa*cosβ-sina*sinβ
sinβ=sina*cosa*cosβ-sina*sina*sinβ 同除cosβ
tanβ=1/2*sin2a+tanβ*(cos2a-1)/2 移项,合并
tanβ=sin2a/(3-cos2a) 利用万能公式
tanβ=tana/(1+2tana*tana) 右边同除tana
=1/(1/tana+2tana) 利用a+b≥2√(ab)当且 仅当a=b时取等号。
有tanβ≤1/2√2=√2/4,当tana=√2/2时取等号,即最大值为√2/4

收起