已知函数f(x)=[2√3cos(x/2)+2sin(x/2)]cos(x/2)(1)求f(17π/12)(2)在⊿ABC中,角A,B,C所对的边分别为a,b,c,若f(C)=√3+1,且b^2=ac,求sinA的值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 05:41:01
已知函数f(x)=[2√3cos(x/2)+2sin(x/2)]cos(x/2)(1)求f(17π/12)(2)在⊿ABC中,角A,B,C所对的边分别为a,b,c,若f(C)=√3+1,且b^2=ac,求sinA的值
xTNA~/wٮ3K1MJo7MI[!E"bLiR] 3SEI/L7g|sK3p>|ӆg`Ut{V\8⃲VnEFG^#/-h|kN%:eQpit~Nw;(yVdJ{A6hp滭 E nhArM^%bVi&h{ =mɚ@bE(Hē&lQL kLqKHS ْ$ckr))Œ'/.p%XqJZƔ`ٜeyP.3:Q8l=x;\2Ol̓-{Pk{P1C&I8b.cr5uKr83 Ԝ+GCX}STeBDn]| >8oVwqNacj"`qBN`--P&qփp24~CBSXݫW&mY;jPDc0tK$7rUz{YY *Iy"xmm#o5ipEż`2h$)dK^`hU\ǜЈ9u Zw%L:+

已知函数f(x)=[2√3cos(x/2)+2sin(x/2)]cos(x/2)(1)求f(17π/12)(2)在⊿ABC中,角A,B,C所对的边分别为a,b,c,若f(C)=√3+1,且b^2=ac,求sinA的值
已知函数f(x)=[2√3cos(x/2)+2sin(x/2)]cos(x/2)
(1)求f(17π/12)
(2)在⊿ABC中,角A,B,C所对的边分别为a,b,c,若f(C)=√3+1,且b^2=ac,求sinA的值

已知函数f(x)=[2√3cos(x/2)+2sin(x/2)]cos(x/2)(1)求f(17π/12)(2)在⊿ABC中,角A,B,C所对的边分别为a,b,c,若f(C)=√3+1,且b^2=ac,求sinA的值
f(x)=[2√3cos(x/2)+2sin(x/2)]cos(x/2)
=2√3[cos(x/2)]^2+sinx
=√3{2[cos(x/2)]^2-1}+√3+sinx
=√3cosx+sinx+√3
=2(sinx*1/2+√3/2*cosx)+√3
=2sin(x+π/3)+√3
(1)求f(17π/12)=2sin(7π/4)+√3=√3-√2
(2)f(C)=√3+1得2sin(C+π/3)+√3=√3+1
故C=π/2,sinC=1,A+B=π/2,则sinB=cosA
且b^2=ac由正弦定理得
sinB^2=sinAsinC=sinA
代入的cosA^2=sinA
1-sinA^2=sinA
sinA^2+sinA-1=0
sinA=(√5-1)/2

1。先把[2√3cos(x/2)+2sin(x/2)]cos(x/2)转化为4[sin(π/3)cos(x/2)+cos(π/3)sin(x/2)]cos(x/2)
下面就利用两角和公式和积化和差公式就能算了。(提示)1/24+17/24=3/4 1/24-17/24=-2/3
2。将上式化为f(x)=√3(1+cosx)+sinx=2sin(x+π/3)+√3,知sin(x+π/...

全部展开

1。先把[2√3cos(x/2)+2sin(x/2)]cos(x/2)转化为4[sin(π/3)cos(x/2)+cos(π/3)sin(x/2)]cos(x/2)
下面就利用两角和公式和积化和差公式就能算了。(提示)1/24+17/24=3/4 1/24-17/24=-2/3
2。将上式化为f(x)=√3(1+cosx)+sinx=2sin(x+π/3)+√3,知sin(x+π/3)=1/2,x=π/3
可见ABC为直角三角形,有a^2+b^2=c^2,把b^2=ac带入,得到
(a/c)^2+(a/c)-1=0,故a/c=(√5-1)/2,由于a/c=sinA(直角三角形),故sinA=(√5-1)/2

收起