开不尽的根都是无理数么.开不尽的根都是无理数么?举几个例子?好么?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 04:41:19
开不尽的根都是无理数么.开不尽的根都是无理数么?举几个例子?好么?
xUR@~\ڙL^Ig{h_ EԢ-&Ǚ> WBmi&$g=ws6Va9fz#zMtkDJ]rT$)+cح;fA'#^y.σ$[]e  & qvnPgi;&MH8'CMyjܦzz9\P$hmB5 T%T 9P6sNḭ6. $a߈@LRy  s/hC`p<{ Ȗ9$ ,"( -GW-&Z oWk\{N/Aa:Va%嗪H+n4d ݴdǶ§4+=zGe5fͳ:sq`qb8%a>T5 :(DDD#J9KR w0hi)zEjPs;>ęfji#e jеbn5ێt?>(/pa19p[ 1&HIg KTHCb5 $8ٍwRtdw;&2Β$.G/bs)Zz #\Aǚ1P@Abt\lL l0H*<\;ć@5{-W,eofK<e"UOẄI; =ñ혧, %>:郄h I|ggp& Te~^tHg?{?7Vheph[&80,ot.>fc7n$

开不尽的根都是无理数么.开不尽的根都是无理数么?举几个例子?好么?
开不尽的根都是无理数么.
开不尽的根都是无理数么?举几个例子?好么?

开不尽的根都是无理数么.开不尽的根都是无理数么?举几个例子?好么?
是的.
无理数是实数中不能精确地表示为两个整数之比的数,即无限不循环小数. 如圆周率、2的平方根等.
·无理数与有理数的区别:
1、把有理数和无理数都写成小数形式时,有理数能写成有限小数和无限循环小数,

比如4=4.0, 4/5=0.8, 1/3=0.33333……而无理数只能写成无限不循环小数,

比如√2=1.414213562…………根据这一点,人们把无理数定义为无限不循环小数.
2、所有的有理数都可以写成两个整数之比;而无理数不能.根据这一点,有人建议给无理数摘掉“无理”的帽子,把有理数改叫为“比数”,把无理数改叫为“非比数”.本来嘛,无理数并不是不讲道理,只是人们最初对它不太了解罢了.

利用有理数和无理数的主要区别,可以证明√2是无理数.
证明:假设√2不是无理数,而是有理数.
既然√2是有理数,它必然可以写成两个整数之比的形式:

√2=p/q
又由于p和q有公因数可以约去,所以可以认为p/q 为既约分数.
把 √2=p/q 两边平方
得 2=(p^2)/(q^2)
即 2(q^2)=p^2
由于2q^2是偶数,p 必定为偶数,设p=2m
由 2(q^2)=4(m^2)
得 q^2=2m^2
同理q必然也为偶数,设q=2n
既然p和q都是偶数,他们必定有公因数2,这与前面假设p/q是既约分数矛盾.这个矛盾是有假设√2是有理数引起的.因此√2是无理数.