设f(x+y,xy)=x²+y²+xy,则df(x,y)=
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 07:36:15
x){n_FvNEmv%y13@(kTOz;m CܨR&Ҭ A
҅BO5@rS*PT(M(R` y<;h9tUәdVS dcSI0
x
<
w# X
设f(x+y,xy)=x²+y²+xy,则df(x,y)=
设f(x+y,xy)=x²+y²+xy,则df(x,y)=
设f(x+y,xy)=x²+y²+xy,则df(x,y)=
f(x+y,xy)=x²+y²+xy
=x²+y²+2xy-xy
=(x+y)²-xy
f(x,y)=x²-y
df(x,y)/dx=2x
df(x,y)=2xdx
df(x,y)/dy=-1
df(x,y)=-dy
所以
df(x,y)==2xdx-dy
(2x-1)d(x,y)
f(x+y,xy)=x²+y²+xy
f(x+y,xy)=(x+y)²-xy
则 f(x,y)=x²-y
df(x,y)=2xdx-dy
df(x,y)=xdx