如图,在正方形ABCD中,E为BC上一点,CF平分角DCG,AE垂直EF,求证AE=EF.
来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 12:54:50
如图,在正方形ABCD中,E为BC上一点,CF平分角DCG,AE垂直EF,求证AE=EF.
如图,在正方形ABCD中,E为BC上一点,CF平分角DCG,AE垂直EF,求证AE=EF.
如图,在正方形ABCD中,E为BC上一点,CF平分角DCG,AE垂直EF,求证AE=EF.
在CG上取点H,使CH=BE,则:EH=BC=AB
作HF'⊥CG,交角DCG的平分线于F',则HF'=CH=BE
连EF'
则:△ABE≌△EHF'
所以,AE=EF'
且:∠BAE=∠HEF'
而:∠BAE+∠AEB=90
所以,∠HEF'+∠AEB=90
所以,∠AEF'=180-(∠HEF'+∠AEB)=180-90=90
即:AE垂直EF'
而:AE垂直EF
所以,F、F'是同一点
所以:AE=EF
证明:在AB上取一点H,使BE=BH,则△BEH是等腰直角三角形,∠BHE=45°,
∴∠AHE=135°
∵ABCD是正方形,∴AB=BC
∵AH=AB-BH,EC=BC-BE ∴AH=EC
∵CF平分DCG∴∠FCG=45°∴∠ECF=135°
∵AE⊥EF∴∠BAE=90°-∠BEA=∠CEF
在△AHE和△ECF中AH=EC,∠AHE=∠EC...
全部展开
证明:在AB上取一点H,使BE=BH,则△BEH是等腰直角三角形,∠BHE=45°,
∴∠AHE=135°
∵ABCD是正方形,∴AB=BC
∵AH=AB-BH,EC=BC-BE ∴AH=EC
∵CF平分DCG∴∠FCG=45°∴∠ECF=135°
∵AE⊥EF∴∠BAE=90°-∠BEA=∠CEF
在△AHE和△ECF中AH=EC,∠AHE=∠ECF,∠HAE=CEF
∴△AHE和△ECF全等
∴AE=EF
收起