设an=∫(0-π/4)(tanx)^ndx.求级数∑(an+a(n+2))/n的和.证明当λ>0时,∑an/n^λ收敛

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 22:40:56
设an=∫(0-π/4)(tanx)^ndx.求级数∑(an+a(n+2))/n的和.证明当λ>0时,∑an/n^λ收敛
xRJA~fٟٕu_$$X`+*$/25 h̦.Pu39w̬6MYM)M3::nG)lc*'$VԂ+þq6%4=RysmZtaҔ9BIĕ*mP ;CG4< b?cC~ _1 .TjH^zQ ai`*k̄pL1r@xx Dq 8r5o^{&N(Q$F6 &+͗6G="NnjX | vŪ|] f\֦Vxo

设an=∫(0-π/4)(tanx)^ndx.求级数∑(an+a(n+2))/n的和.证明当λ>0时,∑an/n^λ收敛
设an=∫(0-π/4)(tanx)^ndx.求级数∑(an+a(n+2))/n的和.证明当λ>0时,∑an/n^λ收敛

设an=∫(0-π/4)(tanx)^ndx.求级数∑(an+a(n+2))/n的和.证明当λ>0时,∑an/n^λ收敛
a[n]+a[n+2] = ∫{0,π/4} (tan(x))^n dx+∫{0,π/4} (tan(x))^(n+2) dx
= ∫{0,π/4} (tan(x))^n·(1+tan²(x)) dx
= ∫{0,π/4} (tan(x))^n·(1/cos²(x)) dx
= ∫{0,π/4} (tan(x))^n·(tan(x))' dx
= (tan(π/4))^(n+1)/(n+1)-(tan(0))^(n+1)/(n+1)
= 1/(n+1).
因此(a[n]+a[n+2])/n = 1/(n(n+1)) = 1/n-1/(n+1).
∑{1 ≤ n} (a[n]+a[n+2])/n = ∑{1 ≤ n} (1/n-1/(n+1)) = 1.
由a[n] = ∫{0,π/4} (tan(x))^n dx > 0,∑a[n]/n^λ是正项级数.
又a[n] = 1/(n+1)-a[n+2] < 1/(n+1) < 1/n,故a[n]/n^λ < 1/n^(1+λ).
而当λ > 0,级数∑1/n^(1+λ)收敛,根据比较判别法,∑a[n]/n^λ也收敛.

设an=∫(0-π/4)(tanx)^ndx.求级数∑(an+a(n+2))/n的和.证明当λ>0时,∑an/n^λ收敛 两道微积分-----级数问题 1 设{un} 是正项数列 ,若lim (n→无穷) U(n+1) / Un = l 证明lim (n→无穷) Un ^ (1/n) = l2 设 an = ∫(0→ π/4)(tanx)^n dx (1) 求 级数 1/n (an +a(n+2) )的值 设方程x+tanx=0的所有正根按从小到大的顺序排列分别为A1 A2 ……An 试证明π/2< An-1 - An 设tanx=3tany(0 设x->0时,e^tanx-e^x与x^n为同阶无穷小量,则n=? 设x→0时e^(tanx)-e^x与x^n是同阶无穷小,则n=______ 设x趋近于0,e^tanx -e^x与x^n是同介无穷小,则n=? 设x->0时,e^tanx-e^x与x^n是同阶无穷小,则n=( ). 设方程x+tanx=0的所有正根按从小到大的顺序排列分别为a1,a2,...,an,.,试证明; 设Sn是数列{an}的前n项和,a1=a,且Sn^2=3n^2an+S(n-1)^2,证明数列{a(n+2)-an}是常数数列设Sn是数列{an}的前n项和,a1=a,且Sn^2=3n^2an+S(n-1)^2,an≠0,n=2,3,4……证明数列{a(n+2)-an}(n≥2)是常数数列 设等比数列an满足:a1=1/3,a2+a3=4/27,且an>0,求数列an的通项公式,设bn=n/an,求数列bn的前n项和Sn 数列 设数列{an},a1>0,an=根号[3a(n-1)+4],n-1是下标,证明:|an-4|=2);liman=4设数列{an},a1>0,an=根号[3a(n-1)+4],n-1是下标,(n>=2),证明:|an-4|=2);liman=4 设数列﹛an﹜中,a1+4,an=3a(n-1)+2n-1,求通项an 求级数的值∞设an=∫(tgx^n)dx,则级数 ∑[(an+a(n+2)]的值为n=1 (积分区间为(0,П/4) 设数列an的前n项和为Sn,满足an+Sn=An^2+Bn+1(A不等于0),a1=3/2,a2=9/4,求证an-n为等比数列并求an 设an=n*4^n,求数列{an}的前n项和(错位相减法) 设等比数列{an}的前n项和为Sn,已知a1=2011,且an+2an+1+an+2=0(N∈N*),则S2012? 设an=(1+1/n)sinnπ/2证明数列{an}没有极限