高中数学 求.最小值已知正数x,y满足x+2y=1,则1/x+1/y的最小值是,答案是 3+2×(根2号)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 23:53:49
xON@+mpK@4v!)AyDiE lhU~ϊR:}?YWxvn[%*]ҷ/^}N-FrzPLj""mE;'^->M=o\LTxUX0%|+COcn2{ӝYJ"E!%bTzs(ۄSd6y ᨉ$1E%o! [1)fG,
高中数学 求.最小值已知正数x,y满足x+2y=1,则1/x+1/y的最小值是,答案是 3+2×(根2号)
高中数学 求.最小值
已知正数x,y满足x+2y=1,则1/x+1/y的最小值是,
答案是 3+2×(根2号)
高中数学 求.最小值已知正数x,y满足x+2y=1,则1/x+1/y的最小值是,答案是 3+2×(根2号)
1写成x+2y
原式=1+2y/x+2+x/y =3+2y/x+x/y>= 3+2×
因为x+2y=1
1/x+1/y=1*(1/x+1/y)把上式代入 (x+2y)(1/x+1/y)=3+(2y)/x+x/y≥3+2√2
当且仅当(2y)/x=x/y且x+2y=1 得x=√2-1 y=(2-√2)/2
已知正数x、y满足xy-x-y=1,求x+y的最小值
已知正数x,y,z满足x+2y+3z=1,求最小值
已知正数xy满足x+2y=2,求1/x+1/y的最小值
高中数学 求.最小值已知正数x,y满足x+2y=1,则1/x+1/y的最小值是,答案是 3+2×(根2号)
已知两正数xy满足x+y=1,求z=(x+1/x)*(y+1/y)的最小值
已知正数x,y满足x+3y=1,求1/x+1/y的最小值
已知X,Y为正数,满足2X+Y=1.求1/x+1/y的最小值
已知两正数xy满足x+y=1,求z=(x+1/x)*(y+1/y)的最小值
已知正数x,y 满足8/x +1/y =1.求x +2y 的最小值
已知正数x、y满足xy-x-y=1,求x+y的最小值 .基本不等式!
已知正数x,y满足2x+5y=20,求1/x+1/y的最小值如题
已知正数x、y满足x+3y=1,求1/x +1/xy 的最小值
已知正数x,y满足2x+8y-xy=0,x+y的最小值
已知正数X,Y满足X+Y=1求1^X+1^Y的最小值若正数a,b满足ab=a+b+3求ab的取值范围已知正数X,Y满足X+2Y=1求1^X+1^Y的最小值若正数a,b满足ab=a+b+3求ab取值范围
已知正数X,Y满足XY=X+9Y+7,求XY的最小值详细!在线等
设正数x,y满足xy=x+9y+7 求x+y最小值,
已知正数x,y满足2x+3y=4,求2/x+1/y的最小值,并求此时相应的x,y的值
已知正数x y满足xy=x+9y+7 则xy的最小值是