复变函数与积分变换证明题:若f(z在区域D内解析,且|f(z)|在区域D内为常值,试证明f(z)在证明f(z)在区域D内为常值函数.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 14:26:33
复变函数与积分变换证明题:若f(z在区域D内解析,且|f(z)|在区域D内为常值,试证明f(z)在证明f(z)在区域D内为常值函数.
xTn@JUPLBVm̥~@P  bD4%$J85!]_ס ̛73ow="juMlsBHڎ۩=s ݷK@?!Z/!uNH,fe›ms Hp=ÜfN'꿦[~<{;:p.,B^~'{H[90I"RTmZ_!iO2VX ͢wf>x$/,0룈Yd/"Hm[}/(mĖrpM>`c1HB2*1b#aƤ #bP7w+c^W+A|Ǐq|Md[GmèG)@s,2đT5u ,$^uV Fdn=qD뀞pIp@^z) E$o%Fp$3GTEW4ΉGRE:k<"ڴXq^HV.M_$Vw 7jixF [k3Ia"ۻvkz)I4ut\rMl6:8j!Ym)!ikq&W7,

复变函数与积分变换证明题:若f(z在区域D内解析,且|f(z)|在区域D内为常值,试证明f(z)在证明f(z)在区域D内为常值函数.
复变函数与积分变换证明题:若f(z在区域D内解析,且|f(z)|在区域D内为常值,试证明f(z)在
证明f(z)在区域D内为常值函数.

复变函数与积分变换证明题:若f(z在区域D内解析,且|f(z)|在区域D内为常值,试证明f(z)在证明f(z)在区域D内为常值函数.
证明:设f(z)=u(x,y)+iv(x,y)
(1)若f(z)恒为0,则结论显然成立.
(2)若f(z)不恒为0
由f(z)解析得:∂u/∂x=∂v/∂y,∂u/∂y=-∂v/∂x C-R条件
|f(z)|=u^2+v^2为非零常数,因此该函数对x和y的偏导数均为0,得:
2u∂u/∂x+2v∂v/∂x=0,即u∂u/∂x+v∂v/∂x=0 (1)
2u∂u/∂y+2v∂v/∂y=0,即u∂u/∂y+v∂v/∂y=0 (2)
将C-R条件代入(2)两式得:
-u∂v/∂x+v∂u/∂x=0 (3)
联立(1)(3)两式,将∂u/∂x,∂v/∂x看作未知数,u,v看作系数,该方程组的系数行列式为
u v
v -u
=-u^2-v^2≠0
因为系数行列式非0,因此方程组只有零解,得:∂u/∂x=0,∂v/∂x=0
再联合C-R条件知,∂u/∂y=0,∂v/∂y=0
因此,u,v与x,y均无关,则u,v均为常数,所以f(z)=u(x,y)+iv(x,y)为常数.

【数学之美】团队为您解答,若有不懂请追问,如果解决问题请点下面的“选为满意答案”.