在平面直角坐标系xoy中,已知椭圆C:x²/a²+y²/b²=1(a>b>0)的离心率e=√2/3,且椭圆C上的点Q(0,2)的距离的最大值为3.(1):求椭圆C的方程,(2):在椭圆上,是否存在M(m,n),使得直线L:mx+ny

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 17:55:28
在平面直角坐标系xoy中,已知椭圆C:x²/a²+y²/b²=1(a>b>0)的离心率e=√2/3,且椭圆C上的点Q(0,2)的距离的最大值为3.(1):求椭圆C的方程,(2):在椭圆上,是否存在M(m,n),使得直线L:mx+ny
xRMOA1&f7;tء;kD86<6C{#Hh6R )KmbK?YO Ӓy>}3V+>:۰*g "%.v7_>?~d>}uU'55ve]|6SW0X2[2"[ "hv ĦÒ9Mz&oqu% ! (xwkhǧ0'7}d^4Xq)/3|akC5.'aޑ:`r "H,壯)F̳i j&YC4Ʊ{ Nږ 

在平面直角坐标系xoy中,已知椭圆C:x²/a²+y²/b²=1(a>b>0)的离心率e=√2/3,且椭圆C上的点Q(0,2)的距离的最大值为3.(1):求椭圆C的方程,(2):在椭圆上,是否存在M(m,n),使得直线L:mx+ny
在平面直角坐标系xoy中,已知椭圆C:x²/a²+y²/b²=1(a>b>0)的离心率e=√2/3,且椭圆C上的点Q(0,2)的距离的最大值为3.(1):求椭圆C的方程,(2):在椭圆上,是否存在M(m,n),使得直线L:mx+ny=1与圆o:x²+y²=1相交于不同的的两点A,B,且三角形OAB的面积最大?若存在,求出点M的坐标及对应的三角形OAB的面积,若不存在,请说明理由.

在平面直角坐标系xoy中,已知椭圆C:x²/a²+y²/b²=1(a>b>0)的离心率e=√2/3,且椭圆C上的点Q(0,2)的距离的最大值为3.(1):求椭圆C的方程,(2):在椭圆上,是否存在M(m,n),使得直线L:mx+ny
(1)e=c/a=√2/3,c^2/a^2=2/9,a^2=9c^2/2,b^2=7c^2/2,
设椭圆上的点P为(acost,bsint),则
PQ^2=(acost)^2+(bsint-2)^2=a^2-c^2(sint)^2-4bsint+4
=-c^2[sint+2b/c^2]^2+4b^2/c^2+a^2+4=-c^2[sint+√14/c]^2+15/2+9c^2/2,
当c>=√14时PQ^2的最大值=15/2+9c^2/2=9,c^2=1/3,矛盾.
当c

在平面直角坐标系xOy中,已知反比例函数 满足:当x 在平面直角坐标系xOY中已知△ABC的顶点A(-4,0)和C(4,0),顶点B在椭圆x^2/25+y^2/9=1上则(sinA+sinC)/sinB= 在平面直角坐标系xOy中,已知三角形ABC的顶点A(-4,0)和C(4,0),顶点B在椭圆x平方/25+y平方/9=1上,则(sinA+sinC)/sinB=? 在平面直角坐标系xOY中已知△ABC的顶点A(-4,0)和C(4,0),顶点B在椭圆x^2/25+y^2/9=1上则(sinA+sinC)/sinB= 在平面直角坐标系xoy中,已知△ABC顶点A(-1,0)和C(1,0),顶点B在椭圆x^2/4+y^2/3上,则求(sinA+sinC)/sinB的值 在平面直角坐标系xOy中,已知△abc的顶点A(-5,0)和C(5,0)顶点B在椭圆x^2/36+y^2/16=1上,则(sinA+sinC)/sinB的值为? 已知三角形ABC顶点A(-4,0)和C(4,0),顶点B在椭圆x^2/25 +y^2/9=1则 (SINA+SINC)/SINB = 题目是在平面直角坐标系XOY中. 在平面直角坐标系xoy中,椭圆x^2/a^2+y^2/b^2=1(a>b>0)的左右焦点分别为F1(-c,0),F2(c,0),已知(1,e)和(e,√3/2)都在椭圆上,其中e为椭圆的离心率,则椭圆的方程为( ) 在平面直角坐标系xOy中,已知椭圆C:x^2/a^2+y^2/b^2=1.与直线l:x=m四个点(3,-1),(-2根号2,0),(-根号3,-根号3),(-3,1)中有三个点在椭圆C上,剩余一个在直线l上.求椭圆方程 高中椭圆解析几何题在平面直角坐标系xOy中,已知三点A(-1,0),B(1,0),C(-1,3/2),以A,B为焦点的椭圆经过点C1,求椭圆方程2,设点D(0.1),是否存在不平行于x轴的直线l与椭圆交于不同点M,N,使(向量DM+向 28.平面直角坐标系xOy中,已知定点A(1,0)和B(0,1).1.若动点C在x轴上运动,则使△ABC为 在平面直角坐标系xoy中 已知椭圆C1:x²/a²+y²/b²=1(a>b>0)的离心率e=√2/3,且椭圆C上的点到Q(0,2)的距离的最大值为3,求椭圆C的方程.这题为什么最大距离处是在y轴的负半轴? 在平面直角坐标系xoy中,已知三角形ABC的顶点A(-p,0)和C(p,0),顶点B在椭圆在椭圆x²/m²+y²/n²=1(m>n>0,p=(m²-n²)½),椭圆的离心率是e,则sinA+sinC/sinB=1/e,试将命题类比到 在平面直角坐标系xoy中 已知椭圆C1:x²/a²+y²/b²=1(a>b>0)的离心率e=√2/3,且椭圆C上的点到Q(0,2)的距离的最大值为3,求椭圆C的方程. 在平面直角坐标系xOy中,已知反比例函数y=2k/x(k≠0)满足: 在平面直角坐标系xoy中已知圆cx2+y2=r2和直线L、x=a 顶点A(-4,0)和C(4.0),顶点B在椭圆x^2/25+y^2/9=1,在平面直角坐标系xoy中,已知△ABC的顶点A(-4,0)和C(4.0),顶点B在椭圆x^2/25+y^2/9=1上,则(sinA+sinC)/sinB=? 在平面直角坐标系xoy中,椭圆x2/a2+y2/b2=1(a>b>0)的左右焦点分别为F1(-c,0)F2(c,0).