如图,设P是抛物线C1:x2=y上的动点.过点P做圆C2:x2+(y+3)2=1的两条切线,交直线l:y=-3于A,B两点.(Ⅰ)求C2的圆心M到抛物线 C1准线的距离.(Ⅱ)是否存在点P,使线段AB被抛物线C1在点P处的

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 18:13:54
如图,设P是抛物线C1:x2=y上的动点.过点P做圆C2:x2+(y+3)2=1的两条切线,交直线l:y=-3于A,B两点.(Ⅰ)求C2的圆心M到抛物线 C1准线的距离.(Ⅱ)是否存在点P,使线段AB被抛物线C1在点P处的
xUMOQ+HyMd -ݚtV5fHX b;Ei1-$ F ZJJ3of\/xG .{w{˼vFgYWkAm~0{k,;[M?N~]HL;EfS8{sNpw 9J)Dlq6&wd9 y~ ڃ-Xi=7,vJ"%i;%?`:(ɮ -&|6zߩ5״K6NJ)X/+3L Zk.< 0L*~qkcM$6bA囱AGbcǂE5>$#ݽf ƌbꔕ8(⩷fFyאm"!;;)⤉1{(A8$&JZ  uLq)guUc)EjM;@Ϧ %e ʼg0kæP6J8^Μ̠

如图,设P是抛物线C1:x2=y上的动点.过点P做圆C2:x2+(y+3)2=1的两条切线,交直线l:y=-3于A,B两点.(Ⅰ)求C2的圆心M到抛物线 C1准线的距离.(Ⅱ)是否存在点P,使线段AB被抛物线C1在点P处的
如图,设P是抛物线C1:x2=y上的动点.过点P做圆C2:x2+(y+3)2=1的两条切线,交直线l:y=-3于A,B两点.
(Ⅰ)求C2的圆心M到抛物线 C1准线的距离.
(Ⅱ)是否存在点P,使线段AB被抛物线C1在点P处的切线平分?若存在,求出点P的坐标;若不存在,请说明理由.

如图,设P是抛物线C1:x2=y上的动点.过点P做圆C2:x2+(y+3)2=1的两条切线,交直线l:y=-3于A,B两点.(Ⅰ)求C2的圆心M到抛物线 C1准线的距离.(Ⅱ)是否存在点P,使线段AB被抛物线C1在点P处的
(Ⅰ)因为抛物线 C1准线的方程为:y=- 1/4,
所以圆心M到抛物线 C1准线的距离为:|- 1/4-(-3)|= 11/4.
(Ⅱ)设点P的坐标为(x0,x02),抛物线 C1在点P处的切线交直线l与点D,
因为:y=x2,所以:y′=2x;
再设A,B,D的横坐标分别为xA,xB,xD,
∴过点P(x0,x02)的抛物线 C1的切线的斜率k=2x0.
过点P(x0,x02)的抛物线 C1的切线方程为:y-x02=2x0(x-x0) ①
当 x0=1时,过点P(1,1)且与圆C2相切的切线PA方程为:y-1= 15/8(x-1).可得xA=- 17/15,xB=1,xD=-1,xA+xB≠2xD.
当x0=-1时,过点P(-1,1)且与圆C2的相切的切线PB的方程为:y-1=- 15/8(x+1).可得xA=-1,xB= 17/15,xD=1,xA+xB≠2xD.
所以x02-1≠0.设切线PA,PB的斜率为k1,k2,
则:PA:y-x02=k1(x-x0) ②
PB:y-x02=k2(x-x0).③
将y=-3分别代入①,②,③得 xD=x02-3/2x0(x0≠0); xA=x0-x02+3/k1; xB=x0-x02+3/k2(k1,k2≠0)
从而 xA+xB=2x0-(x02+3)(1/k1+1/k2).
又 |-x0k1+x02+3|/√k12+1=1,
即(x02-1)k12-2(x02+3)x0k1+(x02+3)2-1=0,
同理(x02-1)k22-2(x02+3)x0k2+(x02+3)2-1=0,
所以k1,k2是方程(x02-1)k2-2(x02+3)x0k+(x02+3)2-1=0的两个不等的根,
从而k1+k2= 2(3+x0)2x0/x02-1,k1?k2= (3+x02)2-1/x02-1,
因为xA+xB=2XD..
所以2x0-(3+x02)( 1/k1+1/k2)= x02-3/x0,即 1/k1+1/k2= 1/x0.
从而 2(3+x02)x0/(x02+3)2-1=1/x0,
进而得x0?=8,x0=±⁴√84.
综上所述,存在点P满足题意,点P的坐标为( ±⁴√84,2 √2).

如图,设P是抛物线C1:x2=y上的动点.过点P做圆C2:x2+(y+3)2=1的两条切线,交直线l:y=-3于A,B两点.(Ⅰ)求C2的圆心M到抛物线 C1准线的距离.(Ⅱ)是否存在点P,使线段AB被抛物线C1在点P处的 一道二次函数的数学题【急】!如图,抛物线y=x2+bx+c与x轴交于A(-1,0)、B(3,0)两点.⑴ 求该抛物线的解析式.⑵ 设⑴中的抛物线上有一个动点P,当点P 在该抛物线上滑动到什么位置时,满足S△P 点P是抛物线y= x2-4x+3上的动点,点P是抛物线对称轴上的动点,在抛物线对称轴上是否存在点P,|PC-PA|最大 如图,已知抛物线C1的方程为:y=x2,抛物线C1关于直线y=1的对称曲线为C2,曲线C1与C2的交点为A,B(2)在曲线BOA上任取异于A,B的点C,连接AC并延长交曲线C2于D,设P为三角形BCD重心轨迹上的任意一点,过P 如图,抛物线C1:y=x^2+2x-3与的顶点为M,与x轴相交于A、B两点,与Y轴交于点D;抛物线C2与抛物线C1关于Y轴接上)对称,顶点为N,与X轴交于E、F两点点A、D、N是否在同一直线上,说明理由点P是C1上动 椭圆C1:x2/a2+y2/b2=1(a>b>0)的上下焦点分别为F1、F2其中F1也是抛物线C2:x2=4y的焦点,点A是曲线C1与C2在第二象限的交点,且|AF1|=5/3求椭圆C1的方程已知点p是椭圆C1上的动点,MN是园(x+b)2+y2=b2的直径, 如图,已知椭圆C1:y^/a^+x^/b^=1(a>b>1)与抛物线C2:x^=2py(p>0)的交点分别为A、B.(1)若C2的焦点恰好是C1的上焦点F,且直线AB过点F,求C1的离心率(2)设P=1/4,且抛物线C2在点A处的切线l与y轴的交点为D(0,-2),求a^+b 二次函数1.3.17.(1)将抛物线y1=2x2向右平移2个单位,得到抛物线y2的图象,则y2= ﹍﹍﹍﹍ ;(2)如图,P是抛物线y2对称轴上的一个动点,直线x=t平行于y轴,分别与直线y=x、抛物线y2交于点A、 椭圆C1:x^2 /a^2 +y^2/ b^2 =1上的点到抛物线C2:x^2=6by的准线的最短距离为1/2,椭圆C1的离心率是根号3/2设C1的右焦点为E,C2的焦点为F,点P是C2上的动点,若三角形EFP的面积为m ,这样的点P有几个 设圆C1:x^2+y^2-10x-6y+32=0,动圆C2:x^2+y^2-2ax-2(8-a)y+4a+12=0点P是椭圆x2/4+y2=1上的点,过点P作圆C1的一条切线,切点为T1,过点P作圆C2的切线,切点为T2,问:是否存在点P,使无穷多个圆C2,满足PT1=PT2? 如图,抛物线L1:y=-x2-2x+3交x轴于A,B两点,交y轴于M点.将抛物线L1向右平移2个单位后得到抛物线L2,L2交x轴于C,D两点.3)若点P是抛物线L1上的一个动点(P不与点A,B重合),那么点P关于原点的对称 动点P(x,y)是抛物线y=x2-1上的点,O为原点,求|OP|2的最小值 如图,抛物线与x轴交于A(x1,0),B(x2,0)两点,且x1>x2,与y轴交于点C(0,4),其中x1,x2是方程x2-2x-8=0的两个根.1)求这条抛物线的解析式;  (2)点P是线段AB上的动点,过点P作PE∥AC,交BC于点E,连接CP,当△CPE 如图,抛物线y=x2-2x-3与x轴交A、B两点如图,抛物线y=x^2-2x-3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为21)P是线段AC上的一个动点,过P点作y轴的平行线交抛物 二次函数(重点重点在第三问!)如图,已知抛物线y=-x2+bx+c经过点A(-1,0)和C(0,4).(1)求这条抛物线的解析式;(2)直线y=x+1与抛物线相交于A、D两点,点P是抛物线上一个动点,点P的横坐标 已知F是抛物线C:y=x2/4的焦点,P是C上的动点,则线段PF中点的轨迹方程是? (2007•青海)如图,抛物线y=x2+bx-c经过直线y=x-3与坐标轴的两个交点A,B,此抛物线与x轴的另一个交点为C,抛物线的顶点为D.(1)求此抛物线的解析式;(2)点P为抛物线上的一个动点,求使S 如图,抛物线y=-x2+mx过点A(4,0),O为坐标原点,Q是抛物线的顶点.(1)求m的值; (2)点P是x轴上方抛物线上的一个动点,过P作PH⊥x轴,H为垂足.有一个同学说:“在x轴上方抛物线上的所有点中