设抛物线y^2=2px的焦点为F经过F的直线与抛物线交于A,B两点又M是其准线上点求证MA,MF,MB斜率成等差数列
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 15:18:09
x͒N1_2p#r'^V ^7ـB 8p(QAH]۹
]oCo>3
ƾmCKev6o^nÇV=&uF|?YpF˅^֭݀l/G$
Wi7V0dfRGq2 8
Bwٹ`鮛)
&Pl8
>]"J'ʓ
fqPpqv˂98˘^r{)_H{Ř$yNUO)$A{%IEƋoM*L:?Q0(PcE5U>(tD,+p;WcND9S**[yI&^\ʴW1JKr3GJs
f
设抛物线y^2=2px的焦点为F经过F的直线与抛物线交于A,B两点又M是其准线上点求证MA,MF,MB斜率成等差数列
设抛物线y^2=2px的焦点为F经过F的直线与抛物线交于A,B两点又M是其准线上点求证MA,MF,MB斜率成等差数列
设抛物线y^2=2px的焦点为F经过F的直线与抛物线交于A,B两点又M是其准线上点求证MA,MF,MB斜率成等差数列
F(p/2,0),设AB直线方程为:y=k(x-p/2),代入抛物线方程,k^2*(x-p/2)^2=2px,k^2*x^2-p(k^2+1)x+p^2/4=0,
解得:x1=[p(k^2+2)+2p√(k^2+1)]/(2k^2),
x2=[p(k^2+2)-2p√(k^2+1)]/(2k^2),
再代入直线方程求得:y1=p(1+√(k^2+1))/k,y2=p(1-√(k^2+1))/k
即A(x1,y1),B(x2,y2)
设M(-p/2,y3),则MF的斜率kmf=-y3/p,
MA的斜率kma=(y3-y1)/(-p/2-x1)=(kp(1+√(k^2+1)-k^2*y3)/[p(k^2+1+√(k^2+1))],
MB的斜率kmb=(y3-y2)/(-p/2-x2)= (kp(1-√(k^2+1)-k^2*y3)/[p(k^2+1-√(k^2+1))],
kma+kmb=-2*y3/p=2*kmf,
所以,MA,MF,MB斜率成等差数列
等等我哟。