已知a、b、c均为正整数,且满足a的平方+b的平方=c的平方,又a为质数,求证:①a、b两数必为一奇一偶;②2(a+b+1)是完全平方数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 10:40:00
已知a、b、c均为正整数,且满足a的平方+b的平方=c的平方,又a为质数,求证:①a、b两数必为一奇一偶;②2(a+b+1)是完全平方数
已知a、b、c均为正整数,且满足a的平方+b的平方=c的平方,又a为质数,求证:①a、b两数必为一奇一偶;
②2(a+b+1)是完全平方数
已知a、b、c均为正整数,且满足a的平方+b的平方=c的平方,又a为质数,求证:①a、b两数必为一奇一偶;②2(a+b+1)是完全平方数
1、c²-b²=(c+b)(c-b)=a²
∵a为质数,故a²=1×a²或a²=a×a
若为a×a,则b=0,a=c,矛盾
故c+b=a²,c-b=1.
因为c+b与c-b奇偶性相同,故a²为奇数,即a为奇数
此时b=1/2(a²-1)为偶数
2、2(a+b+1)=2【a+1/2(a²-1)+1】=(a+1)²
①2是质数中唯一的偶数。假定a=2,则c^2-b^2=a^2=4,这时只有b=0、c=2才能成立,这和b为正整数矛盾!所以a≠2。除2之外,其它质数均为奇数,假定a=2n+1,b=2m+1,m、n均为非负整数,a^2+b^2=4(m^2+n^2+m+n)+2=c^2,所以c^2能被2整除,但不能被4整除,这和c为整数矛盾,所以b不能是奇数,即b必为偶数,所以a和b必然是一奇一偶。②a^2=c^2-...
全部展开
①2是质数中唯一的偶数。假定a=2,则c^2-b^2=a^2=4,这时只有b=0、c=2才能成立,这和b为正整数矛盾!所以a≠2。除2之外,其它质数均为奇数,假定a=2n+1,b=2m+1,m、n均为非负整数,a^2+b^2=4(m^2+n^2+m+n)+2=c^2,所以c^2能被2整除,但不能被4整除,这和c为整数矛盾,所以b不能是奇数,即b必为偶数,所以a和b必然是一奇一偶。②a^2=c^2-b^2=(c-b)(c+b),由于a为质数,所以可设c-b=a^m,c+b=a^n,所以a^2=(c-b)(c+b)=a^(m+n),所以m+n=2,由于m、n为非负整数,且n>m,所以m=0,n=2,所以c-b=a^m=1,c+b=a^2,所以c=1+b=(1+a^2)/2,所以2(a+b+1)=2(a+c)=2(a+(1+a^2)/2)=(a+1)^2,所以2(a+b+1)是完全平方数(证毕)。
收起