如图所示,A,B分别是x轴上位于原点左、右两侧的点,点P(2,p)在第一象限,直线PA交y轴于点C(0,2),直线PB交y轴于点D,S△AOP=6.1、求S△BOP的面积2、求点A的坐标及P的值3、若S△BOP=S△DOP,求直线BD的
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 22:57:55
如图所示,A,B分别是x轴上位于原点左、右两侧的点,点P(2,p)在第一象限,直线PA交y轴于点C(0,2),直线PB交y轴于点D,S△AOP=6.1、求S△BOP的面积2、求点A的坐标及P的值3、若S△BOP=S△DOP,求直线BD的
如图所示,A,B分别是x轴上位于原点左、右两侧的点,点P(2,p)在第一象限,直线PA交y轴于点C(0,2),直线PB交y轴于点D,S△AOP=6.
1、求S△BOP的面积
2、求点A的坐标及P的值
3、若S△BOP=S△DOP,求直线BD的函数解析式
如图所示,A,B分别是x轴上位于原点左、右两侧的点,点P(2,p)在第一象限,直线PA交y轴于点C(0,2),直线PB交y轴于点D,S△AOP=6.1、求S△BOP的面积2、求点A的坐标及P的值3、若S△BOP=S△DOP,求直线BD的
2,S△AOP=6.
AO*P(2,P)/2=6
A0*0C/2+0C*2/2=6
因为0C=2
所以A0=4
所以A(-4,0) P(2,3)
第一个问没算出来
3,做辅助线PF,垂直y轴于点F.做辅助线PE垂直x轴于点E.
因为S三角形BOP=S三角形DOP,就有(1/2)*OB*PE = (1/2)*PF*OD,即
(1/2)*(OE+BE)*PE = (1/2)*PF*(OF+FD),将上面求得的值代入有
(1/2)*(2+BE)*3 = (1/2)*2*(3+FD)即 3BE = 2FD.
又因为:FD:DO = PF:OB 即 FD:(3+FD) = 2:(2+BE),可知BE=2.B坐标为(4,0)
将BE=2代入上式3BE=2FD,可得FD = 3.D坐标为(0,6)
因此可以得到直线BD的解析式为:
y = (-3/2)x + 6
2,S△AOP=6。 AO*P(2,P)/2=6 A0*0C/2+0C*2/2=6 因为0C=2 所以A0=4 所以A(-4,0) P(