设x1,x2是关于方程x^2-4x+k+1=0的两个实数根……设x1、x2是关于方程x^2-4x+k+1=0的两个实数根.试问:是否存在实数k,使得x1*x2>x1+x2成立,请说明!
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 15:00:10
xSJ@E+?,f]>k]&iuôD[dڐ2GZs\m`7+nj9@*/G吀+tZ0Oe`1MiRI\DU?ͧ;bLu`
o=4m.ұg*h}!d:ϨD,'=$ N"=F1 DA8I%X^ZC(hI"v@i㼠uR$R,~e9DC7fB78YIٿ>sX
设x1,x2是关于方程x^2-4x+k+1=0的两个实数根……设x1、x2是关于方程x^2-4x+k+1=0的两个实数根.试问:是否存在实数k,使得x1*x2>x1+x2成立,请说明!
设x1,x2是关于方程x^2-4x+k+1=0的两个实数根……
设x1、x2是关于方程x^2-4x+k+1=0的两个实数根.
试问:是否存在实数k,使得x1*x2>x1+x2成立,请说明!
设x1,x2是关于方程x^2-4x+k+1=0的两个实数根……设x1、x2是关于方程x^2-4x+k+1=0的两个实数根.试问:是否存在实数k,使得x1*x2>x1+x2成立,请说明!
X1+X2=4,X1*X2=k+1 △=16-4k-4>0,得k4,只需k>5,又由判别式得k
∵方程有实数根,
∴b2-4ac≥0,
∴(-4)2-4(k+1)≥0,即k≤3.
∵x=4±(-4)2-4(k+1)2=2±3-k,
∴x1+x2=(2+3-k)+(2-3-k)=4,
∴x1•x2=(2+3-k)•(2-3-k)=k+1
若x1•x2>x1+x2,即k+1>4,
∴k>3.而k≤3,
全部展开
∵方程有实数根,
∴b2-4ac≥0,
∴(-4)2-4(k+1)≥0,即k≤3.
∵x=4±(-4)2-4(k+1)2=2±3-k,
∴x1+x2=(2+3-k)+(2-3-k)=4,
∴x1•x2=(2+3-k)•(2-3-k)=k+1
若x1•x2>x1+x2,即k+1>4,
∴k>3.而k≤3,
因此,不存在实数k,使得x1•x2>x1+x2成立.
收起