数列极限a1=(1/2)^(1/2),an=[(1+ an-1)/2]^(1/2),求lim (a1a2a3.an) (n趋于正无穷大)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 03:45:41
数列极限a1=(1/2)^(1/2),an=[(1+ an-1)/2]^(1/2),求lim (a1a2a3.an)   (n趋于正无穷大)
xRAN@J3:EEHt$aY5ѐ0&h nzr)u*nrx=V'9r)FVg2M QVc;] PL ]W($ó.Nyխ} EẸȹ>=p/3SW+4O |WXGufh`[KZ "ipM366gȼ?F*06dCV9f%hF݀k "@r%by.f8,޶yϞ\= L;X3~QII$K?]LCw[K A0< t&MZK7J5Cak% {O$

数列极限a1=(1/2)^(1/2),an=[(1+ an-1)/2]^(1/2),求lim (a1a2a3.an) (n趋于正无穷大)
数列极限
a1=(1/2)^(1/2),an=[(1+ an-1)/2]^(1/2),求lim (a1a2a3.an) (n趋于正无穷大)

数列极限a1=(1/2)^(1/2),an=[(1+ an-1)/2]^(1/2),求lim (a1a2a3.an) (n趋于正无穷大)
考虑余弦半角公式:cos(θ/2)=√((1+cosθ)/2)
令a[n]=cos(θ/2^n),则a[1]=cos(θ/2)=√2/2
所以θ=π/2
a[n]=cos(π/2^(n+1))
a[1]*a[2]*..*a[n]
=cos(π/4)*cos(π/8)*...*cos(π/2^(n+1))
=2^n*sin(π/2^(n+1))*cos(π/2^(n+1)*cos(π/2^n)*..*cos(π/4)/(2^n*sin(π/2^(n+1)))(反复用正弦倍角公式)
=sin(π/2)/(2^n*sin(π/2^(n+1)))
=1/((π/2)*[sin(π/2^(n+1))/(π/2^(n+1))])
=2/π
上式用到了倍角公式sin2θ=2sinθcosθ,极限公式lim[x->0]sinx/x=1