Limx>1x^2-x+1/(x-1)^2极限,

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/02 20:21:23
Limx>1x^2-x+1/(x-1)^2极限,
x)̭33ҭ6B8g_ΜcTOX~ f=Ɏ] Hj55l 5 u \0s?oc~qAb6`Nyt';z@#83l $Ā

Limx>1x^2-x+1/(x-1)^2极限,
Limx>1x^2-x+1/(x-1)^2极限,

Limx>1x^2-x+1/(x-1)^2极限,
因为Limx>1 (x-1)^2/(x^2-x+1)
=0/(1-1+1)
=0
所以
原式=∞

x->1时,分子不为0,分母为0,则结果为∞