Limx>1x^2-x+1/(x-1)^2极限,
来源:学生作业帮助网 编辑:作业帮 时间:2024/12/02 20:21:23
x)̭33ҭ6B8g_ΜcTOX~
f=Ɏ]
Hj55l
5u
\0s?oc~qAb6`Nyt';z@#83l $ Ā
Limx>1x^2-x+1/(x-1)^2极限,
Limx>1x^2-x+1/(x-1)^2极限,
Limx>1x^2-x+1/(x-1)^2极限,
因为Limx>1 (x-1)^2/(x^2-x+1)
=0/(1-1+1)
=0
所以
原式=∞
x->1时,分子不为0,分母为0,则结果为∞
limx(√(1+x^2)-x)
limx~0 sinx-x/(x-e^x+1)x
limx→1 x^2-x+1/x-1= limx→0+x^sinx=
limx→0(1+2x)^1/x
limx→0(1-2x)^1/x
limx→0(1-2x)^1/x 是多少?
limx→0(1/x^2-cot^2x)
limx→3 e^1/(x-3)(x-2)
x趋于0,limx^2sin(1/x),
limx(x趋近1)x^2-1/(2x^2-x-1)=?limx(x趋近1)(x^2-1)/(2x^2-x-1)=?
limx→1(x^2-x+1)/(x-1)
limx趋于无穷(x/x-1)^3x-1
limx-0(1-3根号1-x+x^2)/x
limx→∞{x-x^2*In(1+ x^-1)
limX趋近无穷 x^2-1/2x^2-x
limx→0(2+x/2-x)∧1/x
limx->无限 [x^2/(x^2+1)]^x=?
limx->无穷 (x+e^x)^1/x