设f(x)=ax^2+bx+c,若6a+2b+c=0,f(1)*f(3)>0,求证:方程f(x)=0必有两个不相等的实根,且3<x1+x2<5

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 04:37:21
设f(x)=ax^2+bx+c,若6a+2b+c=0,f(1)*f(3)>0,求证:方程f(x)=0必有两个不相等的实根,且3<x1+x2<5
xPJ0S.e BRءLbq2pUEY$iv+x?>~Aj$`HS!5.b E1ZG1EB뙼#8[q증v+Q>e8"kL' Y*&kuVR0u 1_r=ِQ`iGg1*v62jO5^cJ2HlM4O<L󝳄Y?C(

设f(x)=ax^2+bx+c,若6a+2b+c=0,f(1)*f(3)>0,求证:方程f(x)=0必有两个不相等的实根,且3<x1+x2<5
设f(x)=ax^2+bx+c,若6a+2b+c=0,f(1)*f(3)>0,求证:方程f(x)=0必有两个不相等的实根,且3<x1+x2<5

设f(x)=ax^2+bx+c,若6a+2b+c=0,f(1)*f(3)>0,求证:方程f(x)=0必有两个不相等的实根,且3<x1+x2<5
只能证后一个问:f(1)f(3)=(a+b+c)(9a+3b+c)>0 因为6a+2b+c=0,所以c=-6a-2b 带入f(1)f(3)=(-5a-b)(3a+b)>0 两边同时除以a^2,(-5-b/a)(3+b/a)>0 解不等式得,3