求定积分∫上限为π/2下限为0 sin^3/(1+cosx)dx

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 10:32:24
求定积分∫上限为π/2下限为0 sin^3/(1+cosx)dx
x){Yϗc]/gNxc}';!̼8c{: +LI*ҧH~ .QFWj++hU ) pFh*4`,a 0Qr]CM&m mȺ B Zp6Kv.z M jK98ϦnCQAK!hz( b4j` ,׳/.H̳E?g"

求定积分∫上限为π/2下限为0 sin^3/(1+cosx)dx
求定积分∫上限为π/2下限为0 sin^3/(1+cosx)dx

求定积分∫上限为π/2下限为0 sin^3/(1+cosx)dx
∫ (sin[x])^3 / (1+cos[x]) dx = ∫ -(sin[x])^2 / (1+cos[x]) d(cos[x])
= ∫ ( (cos[x])^2 - 1 ) / (1 + cos[x]) d(cos[x])
= ∫ (cos[x] - 1) * (cos[x] + 1) / (1 + cos[x]) d(cos[x])
= ∫ (cos[x] - 1) d(cos[x]) 换元 cos[x] = t
= ∫ (t - 1) dt
= 1/2 * t^2 - t + C,C为常数.
= 1/2 * (cos[x])^2 - cos[x] + C
∴∫[0,π/2] (sin[x])^3 / (1+cos[x]) dx = ( 1/2 * (cos[x])^2 - cos[x] ) | [0,π/2]
= 1/2.