在三角形ABC中,A=60,BC=3,则AC+AB的取值范围要一个看得懂的 呜呜 我都疯了

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 10:27:38
在三角形ABC中,A=60,BC=3,则AC+AB的取值范围要一个看得懂的 呜呜 我都疯了
xTn@ &P.<($nҨb<ڐ&i < Sج b̵̹{2_T:tB(II`4jnu -xuͭlCJ5Qfmu9eW|⟇7QcB ϽΈe/3Cƕg7b` YZyċ.:S*:!o1PuU;ƥD@W521)NBꩬ{mv'S'v۾ +BH^ ?m~I'\l|ZF#szӏ:v:1j$_O+rfce}N~%j@s3V̫uE#k|<^E0ORJYYNάr9:vFCO!/>hK(u_zP6&v *`(% /A" IA1x,I9xvkm-{ڲp"5Fa~rqPŗ~XEHBydG ^NƣGhFpセ9:\<5ɕBQV0ocw#:̹]Oo>J>x׷sof

在三角形ABC中,A=60,BC=3,则AC+AB的取值范围要一个看得懂的 呜呜 我都疯了
在三角形ABC中,A=60,BC=3,则AC+AB的取值范围
要一个看得懂的 呜呜 我都疯了

在三角形ABC中,A=60,BC=3,则AC+AB的取值范围要一个看得懂的 呜呜 我都疯了
你可以设想一个60°的角,顶点为A,一条长度为3的线段BC,两个端点分别在∠A的两条边上移动.
当B刚离开A时,ABC开始构成三角形,此时AB接近0
当AB=√3时,C移动到离A最远的位置,此时AC=2√3,AB+AC=3√3
B继续向外移动,C则开始向内移动,当AB=3时,△ABC变成正三角形,AB+AC=6,达到最大
所以0<AB+AC≤6

根据正弦定理,
a/sinA=b/sinB=c/sinC,
a/sinA=(b+c)/(sinB+sinC),
b+c=[3/(√3/2)]2sin[(B+C)/2]cos[(B-C)]
=4√3sin[(B+C)/2]cos[(B-C)/2],(三角函数和差化积公式)
B+C=180°-60°=120°,
B-C=B+C-2C=120°-2C...

全部展开

根据正弦定理,
a/sinA=b/sinB=c/sinC,
a/sinA=(b+c)/(sinB+sinC),
b+c=[3/(√3/2)]2sin[(B+C)/2]cos[(B-C)]
=4√3sin[(B+C)/2]cos[(B-C)/2],(三角函数和差化积公式)
B+C=180°-60°=120°,
B-C=B+C-2C=120°-2C,
b+c=4√3sin60°cos(60°-C)
=6cos(60°-C),
-60°<60°-C<60°,
0B→120°,或C→120°时,最小,为→1/2,
所以,3<AC+AB≤6。

收起