已知定理:“若a,b为常数,g(x)满足g(a+x)+g(a-x)=2b,则函数y=g(x)的图像关于电(a,b)中心对称”设函数f(x)=(x+1-a)/(a-x),定义域为A(1) 试证明y=f(x)的图像关于点(a,-1)成中心对称(2)当x属于[a-2,a-1]时,求证

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 06:47:15
已知定理:“若a,b为常数,g(x)满足g(a+x)+g(a-x)=2b,则函数y=g(x)的图像关于电(a,b)中心对称”设函数f(x)=(x+1-a)/(a-x),定义域为A(1) 试证明y=f(x)的图像关于点(a,-1)成中心对称(2)当x属于[a-2,a-1]时,求证
xUMOQ+,g23 ]2$n'Mƍ1m Ҋ R (:{3 Km7w9{ >/ڹ^ICZ7"<- ecZ0$$J Qצd.[4.Nfrúٴ Vvm;/OA. IU 10eú}T1Nmnk`PTs~^;|23M6u\b 0#SC{Fb X:SX^Ԑ&c>,e1 Tb .U̹`X lj_.\K$>Q*^{=&׆.!?%A6d/ϓSm{[[\ ߵ`Aφ?:îf [*9zaɇx\zY7+,q'ڀMvk0r

已知定理:“若a,b为常数,g(x)满足g(a+x)+g(a-x)=2b,则函数y=g(x)的图像关于电(a,b)中心对称”设函数f(x)=(x+1-a)/(a-x),定义域为A(1) 试证明y=f(x)的图像关于点(a,-1)成中心对称(2)当x属于[a-2,a-1]时,求证
已知定理:“若a,b为常数,g(x)满足g(a+x)+g(a-x)=2b,则函数y=g(x)的图像关于电(a,b)中心对称”
设函数f(x)=(x+1-a)/(a-x),定义域为A
(1) 试证明y=f(x)的图像关于点(a,-1)成中心对称
(2)当x属于[a-2,a-1]时,求证:f(x)属于[-(1/2),0]
(3)对于给定的x1属于A,设计构造过程:x2=f(x1),x3=f(x2),...,x(n+1)=f(xn),如果xi属于A(i=2,3,4...),构造过程将继续下去;如果xi不属于A,构造过程将停止.若对任意xi属于A,构造过程可以无限进行下去,求a的值.

已知定理:“若a,b为常数,g(x)满足g(a+x)+g(a-x)=2b,则函数y=g(x)的图像关于电(a,b)中心对称”设函数f(x)=(x+1-a)/(a-x),定义域为A(1) 试证明y=f(x)的图像关于点(a,-1)成中心对称(2)当x属于[a-2,a-1]时,求证
已知定理:“若a,b为常数,g(x)满足g(a+x)+g(a-x)=2b,则函数y=g(x)的图像关于电(a,b)中心对称”
设函数f(x)=(x+1-a)/(a-x),定义域为A
(1)试证明y=f(x)的图像关于点(a,-1)成中心对称
(2)当x属于[a-2,a-1]时,求证:f(x)属于[-(1/2),0]
(3)对于给定的x1属于A,设计构造过程:x2=f(x1),x3=f(x2),...,x(n+1)=f(xn),如果xi属于A(i=2,3,4...),构造过程将继续下去;如果xi不属于A,构造过程将停止.若对任意xi属于A,构造过程可以无限进行下去,求a的值.
(1)证明:∵函数f(x)=(x+1-a)/(a-x)=1/(a-x)-1
F(a+x)=-1/x-1
F(a-x)=1/x-1
F(a+x)+ F(a-x)=-2
∴f(x)的图像关于点(a,-1)成中心对称

(2)证明:∵函数f(x)=1/(a-x)-1,∴其定义域为A={x|x≠a}
F’(x)=1/(a-x)^2>0
∴当x∈(-∞,a)或(a,+∞)时,单调增
∵x属于[a-2,a-1]
F(a-2)=-1/2
F(a-1)=0
∴f(x)属于[-(1/2),0]

(3)解析:∵设计构造过程:x2=f(x1),x3=f(x2),...,x(n+1)=f(xn),如果xi属于A(i=2,3,4...),构造过程将继续下去;如果xi不属于A,构造过程将停止
要对任意xi属于A,构造过程可以无限进行下去,只要xi不取a即可
∵函数f(x)=1/(a-x)-1,∴其定义域为A={x|x≠a}
令1/(a-x)-1≠a==>x≠(a^2+a-1)/(a-1)
∴当a=-1时,函数f(x)在x=-1处无定义,即1/(a-x)-1≠a恒成立
∴xi不取-1
∴构造过程可以无限进行下去

1,f(a+x)+f(a-x)=(x+1)/(-x)+(1-x)/x=-2
所以关于(a,-1)对称

2,f(x)=-1+1/(a-x)
x属于[a-2,a-1]时,(a-x)属于[1,2]
所以f(x)属于[-1/2,0]

3,定义域为{x|x不等于a}
所以只要对于任意xi,它不等于a就可以了
f(x)值域是{y|...

全部展开

1,f(a+x)+f(a-x)=(x+1)/(-x)+(1-x)/x=-2
所以关于(a,-1)对称

2,f(x)=-1+1/(a-x)
x属于[a-2,a-1]时,(a-x)属于[1,2]
所以f(x)属于[-1/2,0]

3,定义域为{x|x不等于a}
所以只要对于任意xi,它不等于a就可以了
f(x)值域是{y|y不等于-1}
所以a=-1,此时对于任意xi,x(i+1)都不等于-1

收起

已知定理:“若a,b为常数,g(x)满足g(a+x)+g(a-x)=2b,则函数y=g(x)的图象关于点第三问为什么不等于a 已知定理;“若a,b为常数,g(x)满足g(a+x)+g(a-x)=2b,则函数y=g(x)的图象关于点(a, 已知定理:“若a,b为常数,g(x)满足g(a+x)+g(a-x)=2b,则函数y=g(x)的图像关于电(a,b)中心对称”设函数f(x)=(x+1-a)/(a-x),定义域为A(1) 试证明y=f(x)的图像关于点(a,-1)成中心对称(2)当x属于[a-2,a-1]时,求证 数学(30分钟以内加分)已知定理:若a,b为常数,g(x)满足g(a+x)+g(a-x)=2b,则函数y=g(x)的图象关于点(a,b)成中心对称.设函数f(x)=(x+1-a)/(a-x),其定义域为A.1.证明y=f(x)的图象关于点(a,-1)成中心对称(希望 f(x)与g(x)是定义在R上的两个可导函数,若f(x),g(x)满足f'(x)=g'(x),则f(x)与g(x)满足A.f(x)=g(x)B.f(x)-g(x)为常数函数C.f(x)=g(x)=0D.f(x)+g(x)为常数函数 f(x)与g(x)是定义在R上的两个可导出函数,若f(x),g(x)满足f'(x)=g'(x),则f(x)与g(x)满足A.f(x)=g(x)B.f(x)-g(x)为常数C.f(x)=g(x)=0Df(x)+g(x)为常数 f(x)与g(x)是定义在R上的两个多项式函数若f(x),g(x)满足条件f'(x)=g'(x),则f(x)与g(x)满足A f(x)=g(x) B f(x)-g(x)为常数函数C f(x)=g(x)=0 D f(x)+g(x)为常数函数 已知函数f(x)=(1/2)^ax,a为常数.且函数图象过点(-1,2)若g(x)=(4^-x)-2,且g(x)=F(x),求满足条件的x值. 已知常数a,b满足|a-1|+ 若ax+b=0为关于x的一元一次方程,则常数a,b满足 已知函数f(x)=a.2^x+b.3^x,其中常数a、b满足 导数那章节 注:f”(x)中间有引号,是导函数的意思,我不会打一撇.1.f(x)于g(x)是定义在R是的两个可导函数,若f(x),g(x)满足f”(x)=g“(x),则f(x),g(x)满足:A f(x)=g(x) B f(x)-g(x)为常数函数 Cf(x)=g(x)=0 已知实数m,n,满足m2+n2=a,x,y满足x2+y2=b,其中a,b为常数,求mx+ny的最小值 已知函数f(x)=x/(ax+b)(a,b为常数,且a不等于0),满足f(2)=1,f(x)=x有唯一解 已知函数f(x)的定义域为R,满足f(-x)=1/f(x)>0,且g(x)=f(x)+c(c为常数)在区间[a,b]上是减函数.判断并证明g(x)在区间[-b,-a]上的单调性. 高一数学.速度.高悬赏已知函数f(x)的定义域为R,满足f(-x)=1/f(x)大于0,且g(x)=f(x)+c(c为常数)在区间[a,b]上是减函数,判断并证明g(x)在区间[-b,-a]上的单调性要详细过程.~ 已知a,b为常数,若ax+b>0的解集为x为什么a 定义R上的函数满足f(-x)=1/f(x)>0,又g(x)=f(x)+c(c为常数)在[a,b]上是单调增函数证明g(x)在[-b,-a]的单调