已知函数f(x)=(x^2+2x+a)/x,x∈[1,+∞) ,若对于任意x∈[1,+∞),f(x)>a恒成立,求a的范围

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 07:20:24
已知函数f(x)=(x^2+2x+a)/x,x∈[1,+∞) ,若对于任意x∈[1,+∞),f(x)>a恒成立,求a的范围
xN@_e2ma΋MƅYV%5$6J QȥŇ!s+^^(ݜ3Ϙ'_x

已知函数f(x)=(x^2+2x+a)/x,x∈[1,+∞) ,若对于任意x∈[1,+∞),f(x)>a恒成立,求a的范围
已知函数f(x)=(x^2+2x+a)/x,x∈[1,+∞) ,若对于任意x∈[1,+∞),f(x)>a恒成立,求a的范围

已知函数f(x)=(x^2+2x+a)/x,x∈[1,+∞) ,若对于任意x∈[1,+∞),f(x)>a恒成立,求a的范围
f(x)>a即(x^2+2x+a)/x-a>0即(x^2+2x-ax+a)/x>0
因为x>=1>0,所以x^2+2x-ax+a>0
当x=1时,x^2+2x-ax+a>0恒成立
当x不等于1时,a<(x^2+2x)/(x-1)
令m=x-1,所以m>0
所以a<[(m+1)^2+2(m+1)]/m=m+3/m+4
由双钩函数性质得m+3/m值域为[2根号3,正无穷)
所以a<4+2根号3