∫(1/cosX)dX这个不定积分等于?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 10:41:06
∫(1/cosX)dX这个不定积分等于?
xN0_ţ'9 /Q)J5,(`@Q U.(USsssUӼm=;nWzv~j7a~޿||uQ,, $E7$S&2wч1Zz|^ 1&<"4.L1cJѳqśZ7Fn&Bd(;'=(@)L5S(1| A ,;a:)-CAqr92ޠ3E]eݟ

∫(1/cosX)dX这个不定积分等于?
∫(1/cosX)dX这个不定积分等于?

∫(1/cosX)dX这个不定积分等于?
cos2x = 2(cosx)^2 -1 = 2/(secx)^2 - 1 = 2/[1+(tanx)^2] - 1 = [1-(tanx)^2]/[1+(tanx)^2]
设 t = tan(x/2),x = 2*arctan(t),dt = [sec(x/2)]^2 * 1/2*dx = 1/2*(1+t^2)*dx,dx = 2dt/(1+t^2)
∫dx/cosx
=∫dx *{1+[tan(x/2)]^2}/{1-[tan(x/2)]^2}
=∫2dt/(1+t^2) * (1+t^2) /(1-t^2)
=2∫dt/(1-t^2)
=∫[1/(1-t) - 1/(t+1)]*dt
=∫dt/(1-t) - ∫dt/(1+t)
=-ln|1-t| - ln|1+t| + C
=-ln|1-t^2| + C
=-ln|1-[tan(x/2)]^2| + C