求微分方程dy/dx=y/(x+y^4)的通解
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 10:58:33
xAO0ǿ
78{h=7cĠE
<aƬ:!FOmVg<
e3Ybz8sqöG♒:+rZdqi1|].$"!6s=T֪$z%`CkUTFEh
}A<EFk7kzSE'%UqQ9 #D]3'1UO:l,D
ys;2x{Nՠ2 f
ԫN#;dsVehO6#mq
求微分方程dy/dx=y/(x+y^4)的通解
求微分方程dy/dx=y/(x+y^4)的通解
求微分方程dy/dx=y/(x+y^4)的通解
∵令t=lny,则y=e^t,dy=e^tdt
∴代入原方程得
dy/dx=y/(x+y^4)
==>ydx/dy=(x+y^4)
==>e^tdx/(e^tdt)=(x+e^(4t))
==>dx/dt=x+e^(4t).(1)
∵很容易求出齐次方程dx/dt=x的通解是
x=Ce^t (C是积分常数)
∴根据常数变易法,设方程(1)的解为x=C(t)e^t (C(t)是关于t的函数)
∵代入方程(1)得
C'(t)e^t+C(t)e^t=C(t)e^t+e^(4t)
==>C'(t)e^t=e^(4t)
==>C'(t)=e^(3t)
==>C(t)=e^(3t)/3+C (C是积分常数)
∴方程(1)的通解是x=(e^(3t)/3+C)e^t=e^(4t)/3+Ce^t
故原方程的通解是x=y^4/3+Cy (C是积分常数).