如何证明sinA2-sinB2=sin(A-B)*sin(A+B)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 09:48:36
如何证明sinA2-sinB2=sin(A-B)*sin(A+B)
x){ީ/7>Wh $liTOj;RMGRjDA`&XNXF`ˀl-#g0" VYbd#!ayF 1 t

如何证明sinA2-sinB2=sin(A-B)*sin(A+B)
如何证明sinA2-sinB2=sin(A-B)*sin(A+B)

如何证明sinA2-sinB2=sin(A-B)*sin(A+B)
sinA2-sinB2
=(sinA+sinB)(sinA-sinB)
=(sinA+sinB)(sinA-sinB)
=2sin((A+B)/2)cos((A-B)/2)*2Cos((A+B)/2)Sin((A-B)/2)
=2sin((A+B)/2)Cos((A+B)/2)*2Sin((A-B)/2)cos((A-B)/2)
=sin(A+B)sin(A-B)