2道有关数列的题目 (27 19:56:36)⒈数列an 的前n项和Sn的前n项和Sn=an+1(n∈正整数),a1=2,求an 和Sn.⒉数列an 中,a1=2,an =an-1+2n(n〉1),求其通项公式an

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 16:55:30
2道有关数列的题目 (27 19:56:36)⒈数列an 的前n项和Sn的前n项和Sn=an+1(n∈正整数),a1=2,求an 和Sn.⒉数列an 中,a1=2,an =an-1+2n(n〉1),求其通项公式an
xRn@~K".*U^}jԻBbVh H@B~w޵}:i.=^037||*o[8 3ʼnn~/t|]1e]{P!V)o!ѩbtm|tлYZ:"xG$V[W܎=(t bYa!48 18dO:ͼ}Ӎ\+vK泙^Hc @$8 9$Ө$G!10qͱ6tGR CD!%7f`E&VG7X%Tqh/ ӥ$!D,`YОXI(:R~.99۲y}o(b*q )U4 ;({GPت KEכMwoe8'yi64_&б po܈?.ֽͲ$0p/pj,Utx?|&s6:j,Ɍ}.8Vw>*u=x(h] Zxۀ?!&_rp7&Oټq7ˎay_,؅

2道有关数列的题目 (27 19:56:36)⒈数列an 的前n项和Sn的前n项和Sn=an+1(n∈正整数),a1=2,求an 和Sn.⒉数列an 中,a1=2,an =an-1+2n(n〉1),求其通项公式an
2道有关数列的题目 (27 19:56:36)
⒈数列an 的前n项和Sn的前n项和Sn=an+1(n∈正整数),a1=2,求an 和Sn.
⒉数列an 中,a1=2,an =an-1+2n(n〉1),求其通项公式an

2道有关数列的题目 (27 19:56:36)⒈数列an 的前n项和Sn的前n项和Sn=an+1(n∈正整数),a1=2,求an 和Sn.⒉数列an 中,a1=2,an =an-1+2n(n〉1),求其通项公式an
1.Sn=a(n+1)
S(n-1)=an
Sn-S(n-1)=a(n+1)-an=an
a(n+1)=2an
an是公比为2的等比数列
a1=S1=a2=2
n=1时,an=2
n≥2时,an=2^(n-1)
Sn=2^n
2.an-a(n-1)=2n
a(n-1)-a(n-2)=2(n-1)
a(n-2)-a(n-3)=2(n-2)
.
.
.
a2 - a1 =2*2
上式相加得 an-a1=2(2+3+...+n)=(n+2)(n-1)
an=n²+n
当n=1时,a1=1²+1=2 满足通项公式
所以 an=n²+n

第一题有问题根本没法解,第二题结果是
an=n(n+1)解法是你通过递推公式分别求出前五项值,然后用数学归纳法直接得出通项公式,最后如果严谨要求的话就用数学归纳法证明下~