已知实数x,y满足(x-根号x^2-2008)(y-根号y^2-2008)=2008 ,则3x^2-2y^2+3x-3y-2007已知实数x,y满足【x-根号下(x^2-2008)】【y-根号下(y^2-2008)】=2008 ,则3x^2-2y^2+3x-3y-2007的值是

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 20:18:34
已知实数x,y满足(x-根号x^2-2008)(y-根号y^2-2008)=2008 ,则3x^2-2y^2+3x-3y-2007已知实数x,y满足【x-根号下(x^2-2008)】【y-根号下(y^2-2008)】=2008 ,则3x^2-2y^2+3x-3y-2007的值是
xTRA$ ea ?BRTMDxMT!(eF^1iVBnOBj0,RLǹsn\UhH*X֥xhٞ~ó{RufwM(ݛ1&fiFG%:_.g6vgkʹo 拄\"yma*%Qo'mxEuُԈyN0FV{ GN=YfѴU4V! -*ai)s$,Vĩt"?xAOsMK ET?`ZLU8޳]ɩ}HXW=IbN8D$OwL[Mi +mmQ.]>:-<{Kçtۃo( Yu*3 &:@1fd<0B`EVK!Gz }Ky\^VXu;vPdQe!|7f5`#LM^#Is0zJDH.1:tupRL;.Ғ,v~ϋ҄|1J 1-m{SCN ] f2 ~ B=MP? :lﲻނ&[

已知实数x,y满足(x-根号x^2-2008)(y-根号y^2-2008)=2008 ,则3x^2-2y^2+3x-3y-2007已知实数x,y满足【x-根号下(x^2-2008)】【y-根号下(y^2-2008)】=2008 ,则3x^2-2y^2+3x-3y-2007的值是
已知实数x,y满足(x-根号x^2-2008)(y-根号y^2-2008)=2008 ,则3x^2-2y^2+3x-3y-2007
已知实数x,y满足【x-根号下(x^2-2008)】【y-根号下(y^2-2008)】=2008 ,则3x^2-2y^2+3x-3y-2007的值是

已知实数x,y满足(x-根号x^2-2008)(y-根号y^2-2008)=2008 ,则3x^2-2y^2+3x-3y-2007已知实数x,y满足【x-根号下(x^2-2008)】【y-根号下(y^2-2008)】=2008 ,则3x^2-2y^2+3x-3y-2007的值是
x-根号(x^2-2008)可以看着是方程y^2-2xy+2008=0的一个解
同样y-(根号y^2-2008)也可以看着是方程x^2-2xy+2008=0的一个解
显然这两个解的值相等
于是y^2-2xy+2008=x^2-2xy+2008,从而y^2=x^2,
因而(x+y)(x-y)=0,从而就有x=-y或者x=y
当x=-y时,方程x^2-2xy+2008=0化简为3x^2+2008=0,显然方程无解,与题意不符,舍去
当x=y时,方程x^2-2xy+2008=0化简为x^2=2008,方程有解,与题意相符.
于是
3x^2-2y^2+3x-3y-2007=x^2-2007=2008-2007=1

【x-根号下(x^2-2008)】【y-根号下(y^2-2008)】=2008

应该是正实数吧,否则这个解就不好说了
对式子进行有理化 即乘以[x+根号下(x^2-2008)][y+根号下(y^2-2008)]再除以这个时针
得到2008*2008/[x+根号下(x^2-2008)][y+根号下(y^2-2008)]=2008
[x+根号下(x^2-2008)][y+根号下(y^2-2008)]=2008
[x+根号下(x^2-2008)]和[...

全部展开

应该是正实数吧,否则这个解就不好说了
对式子进行有理化 即乘以[x+根号下(x^2-2008)][y+根号下(y^2-2008)]再除以这个时针
得到2008*2008/[x+根号下(x^2-2008)][y+根号下(y^2-2008)]=2008
[x+根号下(x^2-2008)][y+根号下(y^2-2008)]=2008
[x+根号下(x^2-2008)]和[y+根号下(y^2-2008)]都是严格单调增的,x=y=根号2008时最小值恰为2008
所以式子的结果是1
如果没有正实数限制的话情况就复杂多了

收起