已知a>0,b>0,c>0,且a+b+c=1,求证:a的平方加b的平方加c的平方大于等于三分之一

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 05:41:46
已知a>0,b>0,c>0,且a+b+c=1,求证:a的平方加b的平方加c的平方大于等于三分之一
xRN@֬]m?dwb UP$p(FN(nn[NV`Jmvf{Z᫷,l38w1=N[lpYz3 9ΞBxKL\vA{}h V'G(ႸhQ֣L{y W5^tQGy1^EKT68/wp&CR|MSkA555k4]};W[ՃWbVsiRÑsLj:\?xcVugJ1W4&@Qjx)(G `tqk&Gܲm??

已知a>0,b>0,c>0,且a+b+c=1,求证:a的平方加b的平方加c的平方大于等于三分之一
已知a>0,b>0,c>0,且a+b+c=1,求证:a的平方加b的平方加c的平方大于等于三分之一

已知a>0,b>0,c>0,且a+b+c=1,求证:a的平方加b的平方加c的平方大于等于三分之一
a^2+b^2>=2ab,b^2+c^2>=2bc,c^2+a^2>=2ac那么,三式相加得:a^2+b^2+c^2>=ab+bc+ac
而a^2+b^2+c^2=(a+b+c)^2-2(ab+bc+ac)>=(a+b+c)^2-2(a^2+b^2+c^2),移项得:、
a^2+b^2+c^2>=(a+b+c)^2/3=1/3

柯西不等式知道吗?
(a^2+b^2+c^2)*(1+1+1)>=(a+b+c)^2=1
a^2+b^2+c^2>=1/3

因为a^2+b^2>=2ab
b^2+c^2>=2bc
c^2+a^2>=2ac
所以2(a^2+b^2+c^2)≥2(ab+bc+ca)
即a^2+b^2+c^2≥ab+bc+ca
两边同时加1/2*(a^2+b^2+c^2)得
3/2(a^2+b^2+c^2)≥1/2(a^2+b^2+c^2+2ab+2bc+2ca)=1/2(a+b+c)^2=1/2
所以3/2(a^2+b^2+c^2)≥1/2
所以a^2+b^2+c^2≥1/3