1/1*2*3*4+1/2*3*4*5+...+1/97*98*99*100=?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 04:30:38
1/1*2*3*4+1/2*3*4*5+...+1/97*98*99*100=?
xTn@~څ-tXE PmBiݨM6ZtțX^ z!'̜}ߜE 5Y;Haoykn2ޖ1O^K_KhDRa+RtIn H Hǣ_dPb̝aۼ?+8ETʓGo)9f!Q#["߉grwWgt~A<=[lZNB`.J_jRgˀ x!rOɍ]OŇBk"fBFKƧ^BN\ҤCO ==:@x(fTHm5LLbpC_Lo%#g4LLbb;Julá#Jp:-'D0ՏslF̈Sߥn]ݺFbA9ZNb6RPziwv^* dۈ40A5TCUӆ|˹ 5

1/1*2*3*4+1/2*3*4*5+...+1/97*98*99*100=?
1/1*2*3*4+1/2*3*4*5+...+1/97*98*99*100=?

1/1*2*3*4+1/2*3*4*5+...+1/97*98*99*100=?
∵1/1*2*3-1/2*3*4=(4-1)/1*2*3*4=3/1*2*3*4,
∴1/1*2*3*4=(1/3)*(1/1*2*3-1/2*3*4)
同理1/2*3*4*5=(1/3)*(1/2*3*4-1/3*4*5)
.
1/97*98*99*100=(1/3)*(1/97*98*99-1/98*99*100)
∴原式=(1/3)*(1/1*2*3-1/98*99*100)
=1/3(1/6-1/970200)
(最后一步劳烦阁下自己动手了)

∵1/[n(n+1)(n+2)(n+3)]
=(1/3){1/[n(n+1)(n+2)]-1/[(n+1)(n+2)(n+3)]}。
依次令上式中的n=1、2、3、4、······、97,可依次得:
1/(1×2×3×4)=(1/3)[1/(1×2×3)-1/(2×3×4)],
1/(2×3×4×5)=(1/3)[1/(2×3×4)-1/(3×4×5)],
...

全部展开

∵1/[n(n+1)(n+2)(n+3)]
=(1/3){1/[n(n+1)(n+2)]-1/[(n+1)(n+2)(n+3)]}。
依次令上式中的n=1、2、3、4、······、97,可依次得:
1/(1×2×3×4)=(1/3)[1/(1×2×3)-1/(2×3×4)],
1/(2×3×4×5)=(1/3)[1/(2×3×4)-1/(3×4×5)],
1/(3×4×5×6)=(1/3)[1/(3×4×5)-1/(4×5×6)],
······
1/(97×98×99×100)=(1/3)[1/(97×98×99)-1/(98×99×100)]。
将上述97个式子相加,得:
1/(1×2×3×4)+1/(2×3×4×5)+1/(3×4×5×6)+······+1/(97×98×99×100)
=(1/3)[1/(1×2×3)-1/(98×99×100)]
=(1/3)×(49×33×100-1)/(98×99×100)
=(1/3)×(161700-1)/970200
=(1/3)×(161699/970200)
=161699/2910600。

收起