a^2+c^2-b^2=1/2ac,(1)sin^2(A+C)/2+cos2B的值 (2)若b=2,求三角形ABC面积的最大值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 11:48:36
a^2+c^2-b^2=1/2ac,(1)sin^2(A+C)/2+cos2B的值 (2)若b=2,求三角形ABC面积的最大值
xRN13P2XQ''VnLFEcĐFmq/x*{=˙B&Ky*)sZ(˵+kyje9׍ 岽^VWO{EFxڊ?,}_;E׃>Opʙl1й8".G ǶlB}83+ 16B4А2syr]-ŗtKbrߋ&c R:,j)Z1V Ԇ4eV Sw:gW[d(h@eMSKֈC`oր]8@ q~ea0,;|C WخG~/>g9c3x-2 DP\*-bsX4sef/gնc)fGq'

a^2+c^2-b^2=1/2ac,(1)sin^2(A+C)/2+cos2B的值 (2)若b=2,求三角形ABC面积的最大值
a^2+c^2-b^2=1/2ac,(1)sin^2(A+C)/2+cos2B的值 (2)若b=2,求三角形ABC面积的最大值

a^2+c^2-b^2=1/2ac,(1)sin^2(A+C)/2+cos2B的值 (2)若b=2,求三角形ABC面积的最大值
(1)因为a^2+c^2-b^2=1/2ac
根据余弦定理可得cosB=(a^2+c^2-b^2)/(2ac)=1/4
因为sin^2(A+C)/2=sin^2(π/2-B/2)=cos^2(B/2)=(cosB+1)/2
cos2B=2cos^2B-1
所以sin^2(A+C)/2+cos2B=(cosB+1)/2+2cos^2B-1=-1/4
(2)因为cosB=1/4,即B的角度是一定的,b=2
则画一个△ABC的外接圆,点B在圆弧上运动
根据圆中同一条圆弧对应的角相等,结合图像可知,只有在AB=BC的时候,三角形ABC面积最大
即a=c,则a^2+c^2-b^2=1/2ac可化为a^2=3b^2/2=6
因为cosB=1/4,所以sinB=√15/4
所以S△ABC最大值=1/2*AB*BC*sinB=1/2*a^2*√15/4=3√15/4