2852=1.2*X*(1+(X-1000)/2000)^1.6
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 23:16:33
xJ0_e݆͟&i"K/4Ib&
^<Qƺ|M_~|_>ts%qke4 Ms٬vH?word̿+)1>z-ή^~U5TqzyZyS|&-hv64t/_0ڬe6epZΟꙄ+$5Q>;V74xcGz-ղeY2@hGq^j+?6{m(6~G
gABmi 1,0s+pFHB|)K\HS)6`ߧIBh>] 6!הg`C$ Ό.s4O
2852=1.2*X*(1+(X-1000)/2000)^1.6
2852=1.2*X*(1+(X-1000)/2000)^1.6
2852=1.2*X*(1+(X-1000)/2000)^1.6
答:
1.2x[1+(x-1000)/2000]^1.6=2852
转化为:
[1+(x-1000)/2000]^1.6=2852/(1.2x)
函数f(x)=[1+(x-1000)/2000]^1.6=(1/2+x/2000)^1.6=(0.5+t)^1.6
函数g(x)=2852/(1.2x)=(2852/2400)/(x/2000)=(2852/2400)/t的图像见下图:
t=0.79=x/2000
x=1580
(X+X)+(X-X)+(X*X)+(X/X)=100
1/X(X+1)+1/(X+1)(X+2)+1/(X+2)(X+3).+1/(X+99)(X+100)=
解方程:2x+4x+6x...+100x=1-(x+3x+5x+...+99x)
1X+2X+3X…+98X+99X+100X=50500X X等于多少?
1x+2x+3x+4x+5x+6x+7x…+99x=100
设函数f(x)=(x-1)(x-2)...(x-100)(x>100),求F'(X)
f(x)=x(x-1)(x-2)…(x-99)(x-100),求f'(100)
X(X-1)=X
已知x^4+x^3+x^3+x^2+x^1+1=0,求x^100+x^99+x^98+x^97+x^96的值
f(x)=x(x-1)(x+2)(x-3)(x+4)……(x+100),求f'(1)
2852=1.2*X*(1+(X-1000)/2000)^1.6
x>=1,x
X+X+X+X+X+X+100X=1690 问:X等于多少
已知x=100,求x(x+1)分之1+(x+1)(x+2)分之1+(x+2)(x+3)分之1+.+(x+99)(x+100)分之1
x/x-2+x-9/x-7=x+1/x-1+x-8/x-6,
x/x-2+x-9/x-7=x+1/x-1+x-8/x-6,
【1】f[x]=x[x+1][x+2].[x+100][2]f[x]=a0 x^n+a1 x^[n-1]+.a[n-1]x+ an
1/x(x+1)(x+2)+1/(x+1)(x+2)(x+3).+1/(x+98)(x+99)(x+100)=?