解方程1/[x(x+3)]+1/[(x+3)(x+6)]+1/[(x+6)(x+9)]=3/(x平方+1)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 08:54:48
x){|i;6ԏШ62, a皁Own6ԴI*ҧ;긄"цp@`DY*3,Ahfh4H\BS M0T, ,+%lqU=̊ =?g<[F 1y
解方程1/[x(x+3)]+1/[(x+3)(x+6)]+1/[(x+6)(x+9)]=3/(x平方+1)
解方程1/[x(x+3)]+1/[(x+3)(x+6)]+1/[(x+6)(x+9)]=3/(x平方+1)
解方程1/[x(x+3)]+1/[(x+3)(x+6)]+1/[(x+6)(x+9)]=3/(x平方+1)
1/[x(x+3)]+1/[(x+3)(x+6)]+1/[(x+6)(x+9)]=3/(x平方+1)
1/3[1/x-1/(x+3)]+1/3[1/(x+3)-1/(x+6)]+1/3[1/(x+6)-1/(x+9)]=3/(x^2+1)
1/3[1/x-1/(x+3)+1/(x+3)-1/(x+6)+1/(x+6)-1/(x+9)]=3/(x^2+1)
1/3[1/x-1/(x+9)]=3/(x^2+1)
1/3(x+9-x)/x(x+9)=3/(x^2+1)
3/x(x+9)=3/(x^2+1)
x(x+9)=x^2+1
x^2+9x=x^2+1
9x=1
x=1/9
检验:X=1/9是方程的根