(x+1)/(x²+3x+2)+(x²-2x)/(x²-4)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 08:00:44
(x+1)/(x²+3x+2)+(x²-2x)/(x²-4)
xN@_`0nhEUJ16# jU41^-ѓZ pfgg&og0s ./A\˫aisi/[byJ9A`}-t*hP;6*z[oփ"q굾^Z)$I~d% K

(x+1)/(x²+3x+2)+(x²-2x)/(x²-4)
(x+1)/(x²+3x+2)+(x²-2x)/(x²-4)

(x+1)/(x²+3x+2)+(x²-2x)/(x²-4)

对于两个分式,分母不为零所以x≠-1,±2。2(x+1)/(x²+3x+2)=(x+1)/(x+1)(x+2)=1/(x+2),
(x²-2x)/(x²-4)=x(x-2)/[(x-2)(x+2)]=x/(x+2)
所以和在一起(x+1)/(x²+3x+2)+(x²-2x)/(x²-4)=(x+1)/(x+2), x≠-1,±2