如图,三角形ABC中,AB=AC,角A是钝角设一个与角B相等的角的顶点与A重合,角的两边交BC于E、F,求证:AB的平方=BF*CE

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 17:41:17
如图,三角形ABC中,AB=AC,角A是钝角设一个与角B相等的角的顶点与A重合,角的两边交BC于E、F,求证:AB的平方=BF*CE
xRMo@+UPW k쿁hcTH W@@=TU"! JcSo\{3Ʈky#=pI7~AXO a PrBN$$n^5-sWѢy~8'٠Jnޛ{gz?Qaڑz- Qo/Vj K z=xSAVE"mWU߱jeuXe<B}STŅbyCCڶlC(K$UJ#@ P#Бd%IVT|P)BZDiEεQx,@+YL/I jZ(;lR:OG*]wqAx 18 9L>k, w!s \!lv[:anfld'WJG6fi*Ykh c}5`z2C' !b3?d Ü} 2q׾63AԼ6o}U7N

如图,三角形ABC中,AB=AC,角A是钝角设一个与角B相等的角的顶点与A重合,角的两边交BC于E、F,求证:AB的平方=BF*CE
如图,三角形ABC中,AB=AC,角A是钝角
设一个与角B相等的角的顶点与A重合,角的两边交BC于E、F,求证:AB的平方=BF*CE

如图,三角形ABC中,AB=AC,角A是钝角设一个与角B相等的角的顶点与A重合,角的两边交BC于E、F,求证:AB的平方=BF*CE
证明:
∵AB=AC,∴∠B=∠C

∠AEC=∠B+∠BAE,
∠BAF=∠EAF+∠BAE,
∠EAF=∠B
∴∠AEC=∠BAF
∴△ABF∽△ECA
∴AB/CE=BF/AC
则AB*AC=BF*CE
∵AB=AC
∴AB²=BF*CE

证明:
∵AB=AC
∴∠B=∠C
∵∠BAF=∠EAF+∠BAE,∠AEF=∠B+∠BAE
又∵∠EAF=∠B
∴∠BAF=∠AEC
∴△BAF∽△CEA
∴AB/CE=BF/AC
∴AB*AC=BF*CE
∴AB²=BF*CE