用换元法解方程[6(x+1)/(x^2)+x^2/(x+1)]=7,若设x^2/x+1=y,则原方程可化为

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 18:47:37
用换元法解方程[6(x+1)/(x^2)+x^2/(x+1)]=7,若设x^2/x+1=y,则原方程可化为
x){>eųEO[mbgv>_mQmQg $X[sK_VDO{=ٱ&HF&D*3ӯԮ5/.H̳165Բ(Dݱ

用换元法解方程[6(x+1)/(x^2)+x^2/(x+1)]=7,若设x^2/x+1=y,则原方程可化为
用换元法解方程[6(x+1)/(x^2)+x^2/(x+1)]=7,若设x^2/x+1=y,则原方程可化为

用换元法解方程[6(x+1)/(x^2)+x^2/(x+1)]=7,若设x^2/x+1=y,则原方程可化为
设x^2/x+1=y,则原方程可化为
6/y+y=7

32-1*8huhi