1/1x3+1/3x5+1/5x7+.1/2005x2007怎么算?说明思路.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 15:23:14
1/1x3+1/3x5+1/5x7+.1/2005x2007怎么算?说明思路.
xWQoP+}lRJbC7q5Y6Ga/m{oY7:dhrιNiJQ䪂dIT9$R6QyFIqp: S1?)U+G| `)?HJF*rE1i.Y,1GLF!LHLdVBaedK*_FYaP2`t6gĐ+>, {kp~56psر 6q"M)ՉcT%ڧQA?ěŅzSit,!_Ǣb&־]#1% ?vU:O'K@WX#%=#oƅyp][?Z|MHm7~t俛

1/1x3+1/3x5+1/5x7+.1/2005x2007怎么算?说明思路.
1/1x3+1/3x5+1/5x7+.1/2005x2007怎么算?说明思路.

1/1x3+1/3x5+1/5x7+.1/2005x2007怎么算?说明思路.
1/1x3+1/3x5+1/5x7+.1/2005x2007
=1/2[(1/1-1/3)+(1/3-1/5)+(1/5-1/7)+...+(1/2005-1/2007)]
=1/2(1/1-1/2007)
=1003/2007

1/(1x3)=(1/1-1/3)/2
1/[nx(n+2)]=[1/n-1/(n+2)]/2
1/1x3+1/3x5+1/5x7+......1/2005x2007
=1/2[(1/1-1/3)+(1/3-1/5)+(1/5-1/7)+...+(1/2005-1/2007)]
=1/2(1/1-1/2007)
=1003/2007

用裂项相加减法。
将各分式裂项。如,
1/1*3=0.5(1-1/3)
1/3*5=0.5(1/3-1/5)
1/5x7=0.5(1/5-1/7)
……………………
1/2005*2007=0.5(1/2005-1/2007)
各式相加,得
1/1x3+1/3x5+1/5x7+......1/2005x2007
=0.5(1-...

全部展开

用裂项相加减法。
将各分式裂项。如,
1/1*3=0.5(1-1/3)
1/3*5=0.5(1/3-1/5)
1/5x7=0.5(1/5-1/7)
……………………
1/2005*2007=0.5(1/2005-1/2007)
各式相加,得
1/1x3+1/3x5+1/5x7+......1/2005x2007
=0.5(1-1/3)+0.5(1/3-1/5)+(1/5-1/7)+……+0.5(1/2005-1/2007),提出0.5,去括号得。
=0.5(1-1/3+1/3-1/5+1/5-1/7+……+1/2005-1/2007)
=0.5(1-1/2007)=1003/2007
(0.5变成1/2容易看一点)

收起

用裂项相加减法。
将各分式裂项。如,
1/1*3=0.5(1-1/3)
1/3*5=0.5(1/3-1/5)
1/5x7=0.5(1/5-1/7)
……………………
1/2005*2007=0.5(1/2005-1/2007)
各式相加,得
1/1x3+1/3x5+1/5x7+......1/2005x2007

全部展开

用裂项相加减法。
将各分式裂项。如,
1/1*3=0.5(1-1/3)
1/3*5=0.5(1/3-1/5)
1/5x7=0.5(1/5-1/7)
……………………
1/2005*2007=0.5(1/2005-1/2007)
各式相加,得
1/1x3+1/3x5+1/5x7+......1/2005x2007
=0.5(1-1/3)+0.5(1/3-1/5)+(1/5-1/7)+……+0.5(1/2005-1/2007),提出0.5,去括号得。
=0.5(1-1/3+1/3-1/5+1/5-1/7+……+1/2005-1/2007)
=0.5(1-1/2007)=1003/2007

收起

用裂项相加减法。
将各分式裂项。如,
1/1*3=0.5(1-1/3)
1/3*5=0.5(1/3-1/5)
1/5x7=0.5(1/5-1/7)
……………………
1/2005*2007=0.5(1/2005-1/2007)
各式相加,得
1/1x3+1/3x5+1/5x7+......1/2005x2007

全部展开

用裂项相加减法。
将各分式裂项。如,
1/1*3=0.5(1-1/3)
1/3*5=0.5(1/3-1/5)
1/5x7=0.5(1/5-1/7)
……………………
1/2005*2007=0.5(1/2005-1/2007)
各式相加,得
1/1x3+1/3x5+1/5x7+......1/2005x2007
=0.5(1-1/3)+0.5(1/3-1/5)+(1/5-1/7)+……+0.5(1/2005-1/2007),提出0.5,去括号得。
=0.5(1-1/3+1/3-1/5+1/5-1/7+……+1/2005-1/2007)
=0.5(1-1/2007)=1003/2007

收起

原式=(1-1/3+1/3-1/5+1/5+……+1/2005-1/2007)÷2
=2006/2007÷2
=1003/2007

用裂项相加减法。
将各分式裂项。如,
1/1*3=0.5(1-1/3)
1/3*5=0.5(1/3-1/5)
1/5x7=0.5(1/5-1/7)
……………………
1/2005*2007=0.5(1/2005-1/2007)
各式相加,得
1/1x3+1/3x5+1/5x7+......1/2005x2007

全部展开

用裂项相加减法。
将各分式裂项。如,
1/1*3=0.5(1-1/3)
1/3*5=0.5(1/3-1/5)
1/5x7=0.5(1/5-1/7)
……………………
1/2005*2007=0.5(1/2005-1/2007)
各式相加,得
1/1x3+1/3x5+1/5x7+......1/2005x2007
=0.5(1-1/3)+0.5(1/3-1/5)+(1/5-1/7)+……+0.5(1/2005-1/2007),提出0.5,去括号得。
=0.5(1-1/3+1/3-1/5+1/5-1/7+……+1/2005-1/2007)
=0.5(1-1/2007)=1003/2007

收起

相邻的奇数互质哇.
两个互质数a,b(a大于b)符合
1/b-1/a=(a-b)/(ab).
解:原式
=0.5(1-1/3)+0.5(1/3-1/5)+0.5(1/5-1/7)+...+0.5(1/2005-1/2007)
=0.5(1-1/2007)(中间已消去)
=1003/2007.