在三角形ABC中,AB=AC=2,角A=90°,O为BC中点,动点E在BA边上自由移动1,移动过程中三角形OEF是否能成为角EOF=45°的等腰三角形?能,请证明,不能说明理由,2,角EOF=45°时,设BE=y,CF=x,求之间的函数解析式,写

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 22:51:59
在三角形ABC中,AB=AC=2,角A=90°,O为BC中点,动点E在BA边上自由移动1,移动过程中三角形OEF是否能成为角EOF=45°的等腰三角形?能,请证明,不能说明理由,2,角EOF=45°时,设BE=y,CF=x,求之间的函数解析式,写
xTn@YV.*DeogKTQ!<0 IH4yH DԀOAmVB1VUvc9sLxisÛ'vkTV$YB6eCnXhpPV[rW}BA*~v.liuP giY}W%˺}p6J^QxW4R+P VJITե(ncv/WhoZ{%:r3C] p <ވb$WL'+UXb\ .͇ f_a+ ZAA }+B(#%m!/1-T˪o+hT Rd >xj%02Ld,7DDcF̕s ]u*LѓIij"{Hid[KOƝD&c(f"\xқw1 }aڮルԅ+뎑zr!eLU*y6X >r/Y1 b( o!aY6* cEt_D*$ Qj"Y<u|䴏9KNuɼaWy̍M(ȪaT&L0R$R]t6Ly@`ZFV{\¿"a'BpR!Q0Ic2ltB? I' kx3xx+O%x7^;' j:S ] '` 'd<N::FSE$`%(XƱS$W%Y> N9nչE~|

在三角形ABC中,AB=AC=2,角A=90°,O为BC中点,动点E在BA边上自由移动1,移动过程中三角形OEF是否能成为角EOF=45°的等腰三角形?能,请证明,不能说明理由,2,角EOF=45°时,设BE=y,CF=x,求之间的函数解析式,写
在三角形ABC中,AB=AC=2,角A=90°,O为BC中点,动点E在BA边上自由移动
1,移动过程中三角形OEF是否能成为角EOF=45°的等腰三角形?能,请证明,不能说明理由,
2,角EOF=45°时,设BE=y,CF=x,求之间的函数解析式,写出x的取值范围.
F在AC边上自由移动!

在三角形ABC中,AB=AC=2,角A=90°,O为BC中点,动点E在BA边上自由移动1,移动过程中三角形OEF是否能成为角EOF=45°的等腰三角形?能,请证明,不能说明理由,2,角EOF=45°时,设BE=y,CF=x,求之间的函数解析式,写
21.如图12-1所示,在 △ABC中,AB=AC=2 ,角A=90° ,O 为BC 的中点,动点E 在BA 边上自由移动,动点F 在AC 边上自由移动.
(1)点E,F 的移动过程中, △OEF是否能成为角EOF=45° 的等腰三角形?若能,请指出△OEF 为等腰三角形时动点 E,F的位置.若不能,请说明理由.
只要BE=AF即可
(2)当角EOF=45°时,设BE=X ,CF=Y ,求 Y与 X之间的函数解析式,写出 X的取值范围.
Y=2-X (0

F?

(1)点E,F移动的过程中,△OEF能成为∠EOF=45°的等腰三角形,
①当OE=EF时,∠OEF是直角,F,A重合,OE是三角形ABC的中位线,E是AB中点,
②当OF=EF时,∠OFE是直角,与①同理,E,A重合,F是AC中点,
③当OE=OF时,如果连接OA,那么OA必然平分∠BAC,
∴BO=CO,∠B=∠C=45°,EO=FO,
因为∠EOF=4...

全部展开

(1)点E,F移动的过程中,△OEF能成为∠EOF=45°的等腰三角形,
①当OE=EF时,∠OEF是直角,F,A重合,OE是三角形ABC的中位线,E是AB中点,
②当OF=EF时,∠OFE是直角,与①同理,E,A重合,F是AC中点,
③当OE=OF时,如果连接OA,那么OA必然平分∠BAC,
∴BO=CO,∠B=∠C=45°,EO=FO,
因为∠EOF=45°,
∴∠BOE+∠COF=∠BOE+∠BEO=135°,
∴∠COF=∠BEO,
∴△BEO≌△COF,
∴BE=CO=BC,
∵AB=AC=2,
∴BC=2 ,由此可得出BE=CF=.
(2)在△OEB和△FOC中,
∵∠EOB+∠FOC=135°,∠EOB+∠OEB=135°,
∴∠FOC=∠OEB,
又∵∠B=∠C,
∴△OEB∽△FOC,
∴=,
∵BE=x,CF=y,OB=OC==,
∴y=(1≤x≤2).

收起