设等比数列{An}的前n项和为Sn,若S3+S6=2S9 (1)求数列的公比q;(2)求证:2S3,S6,S12-S6成等比数列详细点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 05:35:22
设等比数列{An}的前n项和为Sn,若S3+S6=2S9  (1)求数列的公比q;(2)求证:2S3,S6,S12-S6成等比数列详细点
xVnH~KH(zRYƕxW>@TL&ݥlJY-C.M xU^a4t%)Ϝo9B\F%p˽Q}9;vq&M 7Li&KR`SB9i#Iٔ@2SO"adR&Dq֟/[f

设等比数列{An}的前n项和为Sn,若S3+S6=2S9 (1)求数列的公比q;(2)求证:2S3,S6,S12-S6成等比数列详细点
设等比数列{An}的前n项和为Sn,若S3+S6=2S9 (1)求数列的公比q;(2)求证:2S3,S6,S12-S6成等比数列
详细点

设等比数列{An}的前n项和为Sn,若S3+S6=2S9 (1)求数列的公比q;(2)求证:2S3,S6,S12-S6成等比数列详细点
【解】 an=a1q^(n-1);则有:
Sn=a1(1-q^n)/(1-q);
S3+S6=a1(1-q^3)/(1-q)-a1(1-q^6)/(1-q)=2*a1(1-q^9)/(1-q);
即:
(1-q^3)+(1-q^6)=2(1-q^9);
令:a=q^3;则:
(1-a)+(1-a^2)=2(1-a^3)
a= -1/2
所以:
q=-(1/2)^(1/3)
第二问没什么难得,自己证一下

解 (Ⅰ)当q=1时,S3+S6=9a1,2S9=18a1.因为a1≠0,所以S3+S6≠2S9,由题设q≠1.从而由S3+S6=2S9得a1(1-q3) 1-q +a1(1-q6) 1-q =2•a1(1-q9) 1-q ,化简得2q9-q6-q3=0,
因为q≠0,所以2q6-q3-1=0,即(2q3+1)(q3-1)=0.又q≠1,所以q3=-1 2 ,q=3 -1 2 ...

全部展开

解 (Ⅰ)当q=1时,S3+S6=9a1,2S9=18a1.因为a1≠0,所以S3+S6≠2S9,由题设q≠1.从而由S3+S6=2S9得a1(1-q3) 1-q +a1(1-q6) 1-q =2•a1(1-q9) 1-q ,化简得2q9-q6-q3=0,
因为q≠0,所以2q6-q3-1=0,即(2q3+1)(q3-1)=0.又q≠1,所以q3=-1 2 ,q=3 -1 2 .
(Ⅱ)由q3=-1 2 得S6 2S3 =1 2 •S6-S3+S3 S3 =1 2 •(S6-S3 S3 +1)=1 2 •(q3+1)=1 2 (-1 2 +1)=1 4 ;
又S12-S6 S6 =q6=(-1 2 )2=1 4 ,所以S6 2S3 =S12-S6 S6 ,从而2S3,S6,S12-S6成等比数列.

收起

考点:等比关系的确定.
专题:计算题.
分析:(Ⅰ)分公比等于1,验证数列是否成立;公比不等于1,利用前n项和公式求出公比,即可;
(Ⅱ)通过公比,推出S62S3=S12-S6S6,即可证明数列是等比数列.
解 (Ⅰ)当q=1时,S3+S6=9a1,2S9=18a1.因为a1≠0,所以S3+S6≠2S9,由题设q≠1.从而由S3+S6=2S9得a1(1-q3)1-q...

全部展开

考点:等比关系的确定.
专题:计算题.
分析:(Ⅰ)分公比等于1,验证数列是否成立;公比不等于1,利用前n项和公式求出公比,即可;
(Ⅱ)通过公比,推出S62S3=S12-S6S6,即可证明数列是等比数列.
解 (Ⅰ)当q=1时,S3+S6=9a1,2S9=18a1.因为a1≠0,所以S3+S6≠2S9,由题设q≠1.从而由S3+S6=2S9得a1(1-q3)1-q+a1(1-q6)1-q=2•a1(1-q9)1-q,化简得2q9-q6-q3=0,
因为q≠0,所以2q6-q3-1=0,即(2q3+1)(q3-1)=0.又q≠1,所以q3=-12,q=-123.
(Ⅱ)由q3=-12得S62S3=12•S6-S3+S3S3=12•(S6-S3S3+1)=12•(q3+1)=12(-12+1)=14;
又S12-S6S6=q6=(-12)2=14,所以S62S3=S12-S6S6,从而2S3,S6,S12-S6成等比数列.
点评:本题是中档题,考查数列的基本性质,注意等比数列公比的讨论,等比数列的证明,考查计算能力,常考题型.

收起