若tan(A+B)=2/5,tan(A-π/4)=1/4,则tan(B+π/4)等于多少?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 03:43:41
若tan(A+B)=2/5,tan(A-π/4)=1/4,则tan(B+π/4)等于多少?
x){ѽ$1OQIHT=ߠo~Oӎ@{:v>tɬ&$S;j&(\SY$}[S3=#Sd9ᚺNFzf@!dkbgjfyS4m--l .s^,_lTrf-W n.TVf,.)j$<~(:aFDC<~~6x:DHX@S_DCbFH 5!

若tan(A+B)=2/5,tan(A-π/4)=1/4,则tan(B+π/4)等于多少?
若tan(A+B)=2/5,tan(A-π/4)=1/4,则tan(B+π/4)等于多少?

若tan(A+B)=2/5,tan(A-π/4)=1/4,则tan(B+π/4)等于多少?
arctan(1/4)+排/4=56.25
arctan(2/5)-B=12.69-B=56.25
B=43.56
tan(43.56+排/4)=39.78

解:tan[A+(π/4)]=tan{(A+B)-[B-(π/4)]}
tan{(A+B)-[B-(π/4)]}
={tan{(A+B)-tan[B-(π/4)]}/{1+〈tan{(A+B)×tan[B-(π/4)]〉}
=[(2/5)-(1/4)]/[1+(2/5)×(1/4)]
=(3/20)/(22/20)
=3/22