设二次函数f(x)=ax^2+bx+c(a,b,c∈R),且f(1)=-(a/2),a>2c>b,证明f(x)=0至少有一个实根在区间(0,2)内
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 06:37:07
x){nߓ]=,|ھ
iqFI:I:ɏ::4u옒aiohglb}}`]/7?0ٜ';Xtݼgv>iϮӷac~OӶV"Yf }Mw$Am^hctO4<_t';M^4Ai@ \ !vb ='^Ar PKN7
设二次函数f(x)=ax^2+bx+c(a,b,c∈R),且f(1)=-(a/2),a>2c>b,证明f(x)=0至少有一个实根在区间(0,2)内
设二次函数f(x)=ax^2+bx+c(a,b,c∈R),且f(1)=-(a/2),a>2c>b,证明f(x)=0至少有一个实根在区间(0,2)内
设二次函数f(x)=ax^2+bx+c(a,b,c∈R),且f(1)=-(a/2),a>2c>b,证明f(x)=0至少有一个实根在区间(0,2)内
次函数f(x)=ax^2+bx+c(a,b,c∈R),且f(1)=-(a/2),a>2c>b,证明f(x)=0至少有一个实根在区间(0,2)内
若a<0,图像开口向下且f(1)>0有两个解,0>a>2c>b,所以f(0)=c<0,所以在(0,1)内至少有一个解,同理,可证
1、设二次函数f(x)=ax(平方)+bx+c满足f(x+1)-f(x)=2x
二次函数f(x)=ax^2+bx+c(a
二次函数f(x)=ax^2+bx+c(a
设函数f(x)=ax^2+bx+c (a
设二次函数 f(x)=ax^2+bx+c ,函数F(x)=f(x)-x 的两个零点为m、n(m0且0
已知二次函数f(x)=ax^2+bx+c 讨论函数f(x)的奇偶性
设abc小于0,二次函数f(x)=ax∧2+bx+c的图像可能是
已知二次函数f(x)=ax²+bx+c
二次函数f(x)=ax平方+bx+c(a
设二次函数f(x)=ax^2+bx+c的一个零点是-1,且满足[f(x)-x]*[f(x)-(x^2+1)/2]
设二次函数f(x)=ax^2+bx+c的一个零点是-1,且满足[f(x)-x]*[f(x)-(x^2+1)/2]
设二次函数y=ax^2+bx+c(a
设二次函数y=ax^2+bx+c(a
设二次函数y=ax^2+bx+c (a
已知二次函数f(x)=ax^2+bx+c,若不等式f(x)
已知二次函数f(x)=ax^2+bx+c,且不等式f(x)
设二次函数f(x)=ax方+bx+c,若f(x1)=f(x2)(其中x1不等于x2)则f((x1+x2)/2)等于
设函数f(x)=ax²+bx+c(a