已知f(x)是R上的偶函数,且在(0,+∞)上单调递增,试判断f(x)在(-∞,0)上的单调性,并证明你的结论

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 18:08:38
已知f(x)是R上的偶函数,且在(0,+∞)上单调递增,试判断f(x)在(-∞,0)上的单调性,并证明你的结论
xMW@Krz۰pñpN~ z A[ ?F3/x#5TlW=l0e&LGtz5 G&]=k\pTǽݶU׈6&gmxР;\ rR\ zŃu֪(D~qi5ݳeM?)kvCdNheMo@jUsӠ쇲(,~, dINI#IDt|VPh+DEw΁cInf!R8)8aK|u‘/UQஆa̍Soѣ :vGo'gu/Ϋ)pRE@)&(r.7yمR6)8iQsP$TG TDIDwp۬~`FO7WsW7A=9%:ݷI汰J¥t#qE.ۊBaч&%b+i4rX1408BATNb]x)+/\/I<9

已知f(x)是R上的偶函数,且在(0,+∞)上单调递增,试判断f(x)在(-∞,0)上的单调性,并证明你的结论
已知f(x)是R上的偶函数,且在(0,+∞)上单调递增,试判断f(x)在(-∞,0)上的单调性,并证明你的结论

已知f(x)是R上的偶函数,且在(0,+∞)上单调递增,试判断f(x)在(-∞,0)上的单调性,并证明你的结论
(负无穷,0)上时递减的.
设x1>x2>0.则-x1

已知f(x)是R上的偶函数,且在(0,+∞)上单调递增,试判断f(x)在(-∞,0)上的单调性,并证明你的结论
f(x)在(-∞,0)上的单调递减
证明:y=f(x)是偶函数,则f(-x)=f(x)
若x1-x2>0
f(x)在(0,+∞)上单递增,则f(-x1)>f(-x2),所以f(x1)>f(x2),因为f(-x1)=f(x1)

全部展开

已知f(x)是R上的偶函数,且在(0,+∞)上单调递增,试判断f(x)在(-∞,0)上的单调性,并证明你的结论
f(x)在(-∞,0)上的单调递减
证明:y=f(x)是偶函数,则f(-x)=f(x)
若x1-x2>0
f(x)在(0,+∞)上单递增,则f(-x1)>f(-x2),所以f(x1)>f(x2),因为f(-x1)=f(x1)
所以f(x)在(-∞,0)上为减函数

收起

设X1所以-X1>-X2>0
因为在(0,正无穷大)上是增函数
f(-x1)>f(-x2)
又因为函数为偶函数
f(-x1)=f(x1)
f(-x2)=f(x2)
所以f(x1)>f(x2)
对任意实数在区间(负无穷大,0)上为减函数。

f(x)在(-∞,0)上单调递减
证明:
设a<0 ,b<0 且a若a-b
由题目已知条件得:f(-a)>f(-b)
由于函数f(x)对于任意实数有f(x)=f(-x)
所以有f(a)>f(b)
即f(x)在(-∞,0)上单调递减

已知f(x)是R上的偶函数,且在(0,正无穷)上单调递增,且f(x) 已知f(x)是R上的偶函数,且在(0,正无穷大)上单调递增,并且f(x) 已知f(x)是R上的偶函数,且在(0,+∞)上单调递增,并且f(x) 已知f(x)是R上的偶函数,且在(0,正无穷)上单调递增,并且f(x) 已知f(x)是R上的偶函数,且在(0,∞)上单调递增,并且f(x) 已知f(x)是R上的偶函数,且在(0,正无穷)上单调递增,并且f(x) 已知f(x)在R是偶函数,且x>0时f(x)=x^2+2x+1,求f(x)在R上的定义域? 已知函数f(x)是定义域在R上的偶函数,且当x 已知函数f(x)是定义在R上的偶函数,且当x≤0是 已知f(x)是定义在R上的偶函数,且f(x+2)=-1/f(x),当2 已知f(x)为定义在R上的偶函数,且f(x+4)=f(x),当{x|0 已知f(x)是定义在R上的偶函数,且f(x-1)是奇函数,若f(0)=1,求f(2004)的值 已知f(x)是定义在R上的偶函数,且f(x-1)是奇函数,若f(0)=1,求f(2004)的值. 已知f(x)是定义在R上的偶函数,且在(-无穷大,0]上是增函数,f(-2)=0,求不等式x.f(x) 已知函数f(x)是定义在R上的偶函数,且对于所有的x都有f(x+2)=f(x),当0 已知函数f(x)是定义域在R上的偶函数,且在区间(-oo,0)上单 调递减 证明f(x)=f(-x已知函数f(x)是定义域在R上的偶函数,且在区间(-oo,0)上单 调递减 证明f(x)=f(-x)=f(|x|) 已知f(x)是定义在R上的偶函数且y=f(x+1)是奇函数且对任意0= 已知函数f(x)是定义域为R的偶函数,且f(x)在(0,+∞)上有一个零点则f(x)的零点个数可能为?