若a、b为有理数,且a、b满足a+2b+√2*b=17-4√2不用写为什么(如果太麻烦),只要写一下这道题的突破点在哪.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 23:24:53
若a、b为有理数,且a、b满足a+2b+√2*b=17-4√2不用写为什么(如果太麻烦),只要写一下这道题的突破点在哪.
xRN@V./?!-`%DQ&FTZZ_to<J/3gT)3 S l|^COD yjz]< h XqdAp!qdK<Yfk}*L<|&*Ivx_xJʿ[ש ց2P{Isx95 yY3,}$¶1lNKrs@Х\ b)f$d7HeO?5)L9nB.ijHI *z Nܜk"w2U$Jc8H &G_qT13ܢh0p

若a、b为有理数,且a、b满足a+2b+√2*b=17-4√2不用写为什么(如果太麻烦),只要写一下这道题的突破点在哪.
若a、b为有理数,且a、b满足a+2b+√2*b=17-4√2
不用写为什么(如果太麻烦),只要写一下这道题的突破点在哪.

若a、b为有理数,且a、b满足a+2b+√2*b=17-4√2不用写为什么(如果太麻烦),只要写一下这道题的突破点在哪.
把有√2的放在一起
a+2b-17=-4√2-b√2=(-4-b)√2
左边是有理数
所以右边是有理数
一个有理数乘以√2是有理数
则只有-4-b是0,才能使(-4-b)√2是有理数
所以右边是0
则左边也是0
所以a+2b-17=0
-4-b=0
b=-4,a=25

a+2b=17
√2*b=-4√2
解方程组得
a=25,b=-4
突破点:等式两边,有理数=有理数,无理数=无理数