如图,在平面直角坐标系xoy中,抛物线y=x2+bx+c与x轴交于a、b两点(点a在点b的左侧),与y轴交于点c(0,3),如图,在平面直角坐标系xoy中,抛物线y=x2+bx+c与x轴交于a、b两点(点a在点b的左侧),与y轴交于

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 08:38:37
如图,在平面直角坐标系xoy中,抛物线y=x2+bx+c与x轴交于a、b两点(点a在点b的左侧),与y轴交于点c(0,3),如图,在平面直角坐标系xoy中,抛物线y=x2+bx+c与x轴交于a、b两点(点a在点b的左侧),与y轴交于
xU]oV9#^TÑp&.&-Uuw$[)NuMfMYΒu|I) W {9c4i9{Ȯ/&m }9=Ow{Šm͵ψ|gRӪJ\MV\U.]Vo]OUvqo^Ui.j\KSt@$T!um'Bfj5V~0tgB~o+玶g{tn۰L'DYr7ϼNwʐw=ۥÝ>}=cf?$Yָ=jooV 󬗈0ʂMy `01†3uޞחeR!p=1i 3Ld:yBspHog!Bk!Yw'AAo*Z' ʩ ^:8sD{Sȣ=EQ;ͤZNV4XhaYH%'(^JP?G#9,dR`@$: d]n=rMc-YrZhm2Œ^yTg%X߯peR K7Y1!$saeVe2,5"#ed5BNsn\~_gZ+%X%G#DzJB#AU%̆鼎)}UΎ|[fo#WB) =@|0\؅wƱ)1Vt- ~vÐTP$NlPX԰MԌ\ ea EUBE\mRi#Gȥb\%Pg";(7a$P"*FFiunYe4/wtD7]>Ƅ;j5#Vrz6iPsdƻMqO[w뫷ߗ,o֝nIP^o ,

如图,在平面直角坐标系xoy中,抛物线y=x2+bx+c与x轴交于a、b两点(点a在点b的左侧),与y轴交于点c(0,3),如图,在平面直角坐标系xoy中,抛物线y=x2+bx+c与x轴交于a、b两点(点a在点b的左侧),与y轴交于
如图,在平面直角坐标系xoy中,抛物线y=x2+bx+c与x轴交于a、b两点(点a在点b的左侧),与y轴交于点c(0,3),
如图,在平面直角坐标系xoy中,抛物线y=x2+bx+c与x轴交于a、b两点(点a在点b的左侧),与y轴交于点c(0,3),点b的坐标为(3,0),将直线y=kx沿y轴向上平移3个单位长度后恰好经过B,C两点
(1)求直线BC及抛物线的解析式
(2)设抛物线的顶点为D,点P在抛物线的对称轴上,且∠APD=∠ACB,求点P的坐标
(3)连接CD,求∠OCA与∠OCD两角和的度数

如图,在平面直角坐标系xoy中,抛物线y=x2+bx+c与x轴交于a、b两点(点a在点b的左侧),与y轴交于点c(0,3),如图,在平面直角坐标系xoy中,抛物线y=x2+bx+c与x轴交于a、b两点(点a在点b的左侧),与y轴交于
1.直线y=kx沿y轴向上平移3个单位长度后的方程式是y=kx+3,这就是BC直线啦,将点B(3,0)代入,得k=-1,所以BC直线的解析式是y+x-3=0
C点在y轴上,当x=0时,y=3,所以C点的坐标是(0,3)
将B、C两点代入抛物线得9+3b+c=0,3=c,所以b=-4,c=3,所以抛物线的方程是y=x^2-4x+3
2.由1得,A(1,0),D(2,-1),设坐标轴原点为P,抛物线对称轴与x轴交于Q点.所以QA=1,OA=1
由1得,三角形OBC为等腰直角三角形.所以tan∠ACB=tan(∠BCO-∠ACO)=tan(45°-∠ACO)=(tan45°-tan∠ACO)/(1+tan45°*tan∠ACO)=(1-1/3)/(1+1/3)=1/2.
又∠APD=∠ACB,所以tan∠APD=tan∠ACB=QA/PQ=1/PQ=1/2,所以PQ=2
因为P点在抛物线的对称轴上,所以P点的横坐标是2
又P点有两点,所以纵坐标为正负2
所以P点的坐标为(2,2),(2,-2)
3.设CD与x轴的交点为E,很明显,三角形OEC与三角形QED相似,所以有
QE/OE=(2-OE)/OE=DQ/OC=1/3,所以OE=3/2.
所以tan∠OCA=OA/OC=1/3,tan∠OCD=tan∠OCE=OE/OC=1/2
由tan(∠OCA+∠OCD)=(tan∠OCA+tan∠OCD)/(1-tan(∠OCA*tan∠OCD)=(1/3+1/2)/(1-1/3*1/2)=1
又0<∠OCA<45°,0<∠OCD<45°,所以0<∠OCA+∠OCD<90°
所以∠OCA+∠OCD=45°,为所求
想给你做一遍的,但是有点困了……,刚做了前两问就做不下去了

(2)设抛物线的顶点为D,点P在抛物线的对称轴上,且∠APD=∠ACB,求点P的坐标

35

lrgklbj.vbk;'