已知偶函数f(x)=loga∣ax+b∣在(0,+∞)上单调递增,则f(b-2)与f(a+1)的大小关系

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 04:10:12
已知偶函数f(x)=loga∣ax+b∣在(0,+∞)上单调递增,则f(b-2)与f(a+1)的大小关系
xQN@~=B=m҃iJ@c$jm6zI*BBŞ|wYozMf~fԆp;3h? &msm4|пQȜ>ΙřR4<3_a|RܔZBnN?$) w -8Co$%kpӉ)%ߍl6*['"rj2MV~ 0vzf{Ha]h}A I<)Z\LŽ|>mQ#˷Σ<>& ;>~9 ̎#J&݈-RUj:=;Jp

已知偶函数f(x)=loga∣ax+b∣在(0,+∞)上单调递增,则f(b-2)与f(a+1)的大小关系
已知偶函数f(x)=loga∣ax+b∣在(0,+∞)上单调递增,则f(b-2)与f(a+1)的大小关系

已知偶函数f(x)=loga∣ax+b∣在(0,+∞)上单调递增,则f(b-2)与f(a+1)的大小关系
f(x)=loga∣ax+b∣是偶函数,则有:
f(-x)= f(x) loga∣-ax+b∣=loga∣ax+b∣
∣-ax+b∣=∣ax+b∣ 所以b=0
此时f(x)=loga∣ax|
a是底数大于0,∣ax|在(0,+∞)上时增函数,
根据复合函数“同增异减”的原则,底数a必须大于1.
因为f(b-2)=f(-2)=f(2) 且a+1>2
又f(x) 在(0,+∞)上单调递增,所以f(a+1)> f(2)
即f(a+1) > f(b-2)