三重积分题,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 22:19:03
三重积分题,
xS]OP+'ptNʍ cL?QVݮ:%L4@ ш&3s?F{튿i.F 7^ט nߏYGЃ ?[ bg}j;{Pw&rm/ =G_6K!/_r

三重积分题,
三重积分题,
 

三重积分题,
方法一、采用偏微分方法
定义域D内的极大值点应满足:
z'(x) = 2xy(4-x-y) - x²y =0
z'(y) = x²(4-x-y) - x²y = 0
整理得:
xy(8-2x-3y) = 0;
y²(4-2x-y) = 0;
xy =0 ;与 y²=0为域D边界,暂不考虑;
解得:
x=2;y=1;
代入得 z = x²y(4-x-y) = 4
将域D的边界条件分别代入:
x=0:z = x²y(4-x-y) = 0;
y=0:z = x²y(4-x-y) = 0;
x+y = 6时 z = x²y(4-x-y) z ≤ (x³-4x²)²/(4x²) = (x²-4x)²/4 = [(x-2)²-4]²/4
显然 当 x=2 时,不等式右侧有最大值 4;
即 x=2时,z 有最大值4;
检验边界条件:
x=0:z = x²y(4-x-y) = 0;
y=0:z = x²y(4-x-y) = 0;
x+y = 6时 z = x²y(4-x-y)