1.sin 2π/5 与 cos 15π/8 2.tan π/7 与 tan 11π/9 比较sin 2π/5 与 cos 15π/8和 tan π/7 与 tan 11π/9 的大小

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 00:23:52
1.sin 2π/5 与 cos 15π/8 2.tan π/7 与 tan 11π/9 比较sin 2π/5 与 cos 15π/8和 tan π/7 与 tan 11π/9 的大小
xSN1~!ɶ z[FH@AB Q!]ᴯ]Y9ȥ}M,])mfi4Ӡf  0EA!gКi"?:G殺Zq3Z$eA$A2bF1&}nߵ+ gkWѓ=䞼7JiHiq |AH1ES<\{e6R1_ \La/*ɜ3 Ӂ#3/`%gP3"8iF_GOrkא7ZoOՄE;Uk|-ہLp<(iOoԶ֌Qb;p

1.sin 2π/5 与 cos 15π/8 2.tan π/7 与 tan 11π/9 比较sin 2π/5 与 cos 15π/8和 tan π/7 与 tan 11π/9 的大小
1.sin 2π/5 与 cos 15π/8 2.tan π/7 与 tan 11π/9
比较sin 2π/5 与 cos 15π/8
和 tan π/7 与 tan 11π/9 的大小

1.sin 2π/5 与 cos 15π/8 2.tan π/7 与 tan 11π/9 比较sin 2π/5 与 cos 15π/8和 tan π/7 与 tan 11π/9 的大小
1.sin 2π/5 与 cos 15π/8
cos 15π/8=cos(3π/2+3π/8)=sin3π/8
y=sinx在(-π/2,π/2)是增函数
2π/5=16π/40 >3π/8=15π/40,sin 2π/5 >cos 15π/8
2.tan π/7 与 tan 11π/9=tan( π+2π/9)=tan 2π/9
y=tanx在( -π/2,π/2)是增函数
π/7

1、
比较sin 2π/5 与 cos 15π/8的大小

cos 15π/8= cos(π+7π/8)= - cos( 7π/8)=-cos(π/2+ 3π/8)=sin(3π/8)
π/2> 2π/5>3π/8>0又因为sinx在(0, π/2)单调递增
所以sin 2π/5 >sin(3π/8),即是:sin 2π/5> cos 15π/8

全部展开

1、
比较sin 2π/5 与 cos 15π/8的大小

cos 15π/8= cos(π+7π/8)= - cos( 7π/8)=-cos(π/2+ 3π/8)=sin(3π/8)
π/2> 2π/5>3π/8>0又因为sinx在(0, π/2)单调递增
所以sin 2π/5 >sin(3π/8),即是:sin 2π/5> cos 15π/8
2、比较tan π/7 与 tan 11π/9 的大小
tan 11π/9 =tan(π+2π/9)=tan 2π/9
0< π/7 <2π/9<π/2
有因为tanx在(0, π/2)单调递增
所以tan π/7<tan2π/9
即是:tan π/7<tan11π/9

收起

1.cos 15π/8= cos(π+7π/8)= - cos( 7π/8)=-cos(π/2+ 3π/8)=sin(3π/8)
π/2> 2π/5>3π/8>0又因为sinx在(0, π/2)单调递增
所以sin 2π/5 >sin(3π/8),即是:sin 2π/5> cos 15π/8
2、比较tan π/7 与 tan 11π/9 的大小
tan 11π...

全部展开

1.cos 15π/8= cos(π+7π/8)= - cos( 7π/8)=-cos(π/2+ 3π/8)=sin(3π/8)
π/2> 2π/5>3π/8>0又因为sinx在(0, π/2)单调递增
所以sin 2π/5 >sin(3π/8),即是:sin 2π/5> cos 15π/8
2、比较tan π/7 与 tan 11π/9 的大小
tan 11π/9 =tan(π+2π/9)=tan 2π/9
0< π/7 <2π/9<π/2
有因为tanx在(0, π/2)单调递增
所以tan π/7<tan2π/9
即是:tan π/7<tan11π/9

收起

比较大小(1)sin(-π/16)与sin(-π/5) (2)cos(-33/5π)与cos(-13/3π) 1.sin 2π/5 与 cos 15π/8 2.tan π/7 与 tan 11π/9 比较sin 2π/5 与 cos 15π/8和 tan π/7 与 tan 11π/9 的大小 α∈(0,π/2 ),比较 sin(cosα) 与cos(sinα)大小 比较大小sin(cosα)与cos(sinα)(0<α<π/2) sin(α-β)sin(β-r)-cos(α-β)cos(r-β) 1.sin(α-β)sin(β-r)-cos(α-β)cos(r-β)2.( tan4分之5π+tan12分之5π)/(1-tan12分之5π)3.[ sin(α+β)-2sinαcosβ]/2sinαsinβ+cos(α+β) 比较大小sin(-π/4)与sin(π/6)RT 2:cos(-23π/5)与cos(-17π/4) 利用和差角公式化简 (2)sin(π/3+α)+sin(π/3-α)(2)sin(π/3+α)+sin(π/3-α)(3)cos(π/4+α)-cos(π/4-α)(4)cos(60°+α)+cos(60°-α)(5)sin(α-β)cosβ+cos(α-β)sinβ(6)cos(α+β)cosβ+sin(α+β)sinβ 1.sin的三次方(-α)cos(2π+α)tan(-α-π)2.cos(180°+α)sin(α+360°)/sin(-α-180°)cos(-180°-α)3.sin(2π-α)cos(π+α)cos(π/2+α)sin(9π/2+α)/cos(π-α)sin(3π-α)sin(-π-α)4.已知sinα=-3/5,求cosα,tanα的值5.已知tanα=-根号下3,求 cosπ/5与sinπ/5 比大小cosπ/5=sin(π/2-π/5) 这部怎么来的 sin(a-π)+5cos(2π-a)+4cos(π+a)/cos(π-a)-sin(-a) 求 [sin(5π-α)cos(-π-α)]/[cos(α-π)cos(π/2+α)]化简 若θ∈[0,(π/2)],试比较cos(sinθ)与sin(cosθ)的大小. 已知α属于(0,π/2),比较sin(cosα)与cos(sinα)的大小 如何比较sin(5π/7)与cos(2π/7)的大小 比较下列各组三角函数值的大小1)sin(-3π/8)与sin(-5π/8)2)sin(-2π/7)与sin(-3π/8)3)cos(-2π/5)与cos(-3π/5)4)cos(-2π/3)与cos(-3π/5) 1.化简根号2cos x - 根号6sin x2.已知sin(α-β)cosα-cos(β-α)sinα=3/5,β是第三象限角,求sin(β+5π/4)的值.3.化简sin(α-β)sin(β-λ)-cos(α-β)cos(λ-β) 已知3sinα cosα=0,求 3cosα 5sinα/sinα-cosα与sin²α 2sinα 比较下列各组三角函数值的大小 1)sinπ/3与sinπ/6 2)sin3π/5与sin4π/7 3)cosπ/4与cosπ/3 4)cos比较下列各组三角函数值的大小 1)sinπ/3与sinπ/6 2)sin3π/5与sin4π/7 3)cosπ/4与cosπ/3 4)cos3π/5与cos5π